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ABSTRACT 

Edge based finite elements are finite elements whose degrees of freedom are assigned 

to edges of finite elements rather than nodes. Compared with conventional node based 

counterparts, they offer many useful properties. For example, they enforce tangential 

continuity only on inter-element boundaries but no normal continuity; they allow a vector 

field separated as the sum of the gradient of a scalar function and the remaining part. This 

dissertation presents a magnetic vector potential formulation implemented with edge 

elements to simulate eddy current phenomenon. The additional degree of freedom associated 

with the magnetic vector potential is fixed with the help of tree and co-tree separation from 

graph theory. The validity of the method is verified using well-known benchmark problems. 

A phenomenological signal inversion scheme is proposed to characterize defect 

profiles from eddy current probe signals The method relies on the edge element based 

forward model to predict probe responses and a minimization algorithm to minimize an 

objective function representing the squared error between the modal prediction and the 

observed signal. A gradient-based minimization algorithm is first investigated. The long 

computation time associated with the gradient calculation is reduced using the adjoint 

equation based method. However, gradient-based methods tend to converge to a poorer local 

minimum. A genetic algorithm and a simulated annealing algorithm are employed to 

improve performance. The performance of these stochastic methods in the context of the 

defect characterization problem is studied. The preliminary results show the effectiveness of 

the stochastic methods. 
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CHAPTER 1 INTRODUCTION 

1.1 NDT/NDE Techniques 

NDT/NDE techniques are widely used in a number of industrial areas to control 

product quality, prevent catastrophic failure, improve reliability and regulate manufacturing 

processes. NDT/NDE plays a crucial role in everyday life, because it is necessary to assure 

safety and reliability. Components and structures that are typically inspected include aircraft, 

gas pipeline, bridge, power plant, etc. 

The American Society for Nondestructive Testing (ASNT) defines Nondestructive 

testing (NDT) as the examination of an object or material with technology that does not 

affect its future usefulness. Thus, NDT can be used without destroying or damaging a 

product or material. Since it allows inspection without interfering with a product's final use, 

NDT provides an excellent balance between quality control and cost-effectiveness. The term 

Nondestructive evaluation (NDE) usually connotes a more quantitative aspect of the subject. 

For example, NDE techniques are used not only to detect the presence of a flaw or defect, but 

also to determine the location, size, or even shape of the defect. NDE may also be used to 

characterize material properties. Since the terms NDT and NDE are so close to each other, 

these two terms are used interchangeably in this dissertation unless otherwise stated. 

NDT techniques usually involve the introduction of some form of physical energy, 

such as X-rays, ultrasonic waves, or electromagnetic fields, into the test specimen. The 

nature of the interaction between the energy and the test specimen is a function of several 

variables including the type of the energy, material properties, defects and inhomogeneities 

in the material and so on. The interaction is then sampled through a transducer and the 
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response of the transducer is analyzed to characterize the material properties of the specimen. 

Common NDT techniques include radiography testing (RT), ultrasonic testing (UT), 

electromagnetic testing (ET), and acoustic emission testing (AE) etc [I]. Specific NDT 

methods that can be used in an application depend on the physical properties of the material 

and the nature of the information being sought. A thorough knowledge of each NDT 

technique is required to ensure the correct selection of the appropriate method for a given 

application. This dissertation is limited to a description and treatment of eddy current 

methods only. 

1.2 Eddy Current Testing 

Eddy current testing (ECT) is an electromagnetic technique that can only be used for 

testing conducting materials. It originates from Michael Faraday's discovery of 

electromagnetic induction in 1831. According to Faraday's law, a time varying magnetic 

field induces an electromotive force in a conducting material. Even though the force is very 

weak, large currents flow inside the metal when the metal has a high conductivity. The 

induced currents tend to flow in loops, called eddy currents. Eddy currents generate a time 

varying magnetic field in turn and the generated magnetic field interacts with the original 

field. To distinguish between them, the original time varying magnetic field is termed the 

primary field while the magnetic field established by the induced current is often termed the 

secondary field. The direction of eddy currents depends on the direction of the time varying 

primary field. According to Lenz's law, the secondary field generated by eddy currents 

opposes the primary magnetic field changes. 
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The eddy current phenomenon is easily observed when a coil carrying an AC current 

is brought in proximity to the surface of a metal specimen, as shown in Figure 1.1. The time 

varying magnetic field established by the coil causes circulating eddy currents in the metal. 

The direction of the induced eddy currents is opposite to the current flow in the coil in 

accordance with Lenz's law. The secondary magnetic field induced by eddy currents 

interacts with the primary field and thus alters the impedance of the coil. Changes in the 

material properties of the metal cause changes in the magnitude and phase of the induced 

eddy currents and hence the coil impedance. As an example, assume that there is a crack in 

the surface of the metal underneath the coil. The crack interrupts the eddy current flow, thus 

decreasing the loading of the coil and increasing its effective impedance. By measuring the 

impedance of the coil, we can detect changes in the material property. This is the basis of 

eddy current testing. 

Eddy currents are affected by factors depending on the test specimen and 

experimental conditions. Specimen dependent factors include its electrical conductivity, 

magnetic permeability, thickness, material property discontinuities etc. Experimental factors 

that affect the response include the shape and size of the excitation coil, operating frequency, 

and proximity of the coil to the specimen or lift-off. 

An important issue that must be taken into account in eddy current testing is the depth 

of penetration. The eddy current density is greatest on the surface of the conducting 

specimen and decays with depth as shown in Fig 1.2. This phenomenon is described by the 

standard depth of penetration or skin depth, at which the eddy current density reduces to 

36.8% of its surface value. For a plane wave on a planar surface, the standard depth of 

penetration is given by the formula [2] [3] 
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Fig 1.1 An alternating current bearing coil over a block of metal 

Eddy Current 
Strength 

0 37% 100% 

Fig 1.2 The skin depth effect of eddy currents 
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From this it can be seen that the skin depth S decreases with an increase in the operating 

frequency f, conductivity a and permeability H. Defects located beyond the skin depth 

have very little effect on the eddy current and its magnetic field. Because of the skin effect 

phenomenon, eddy current testing is limited to detecting surface or subsurface flaws and 

corrosion. 

The eddy current phenomenon is described using Maxwell's equations 

mathematically. By solving the Maxwell's equations, we can determine the magnitude and 

phase of eddy currents, the distribution of magnetic fields and coil impedances. The solution 

methods generally fall into two categories: analytical methods and numerical methods. The 

analytical analysis of eddy currents can be found in the works of Lameraner and Stall [4j; 

Stoli [5]; Tegopoulos and Kriezis [6]. However, analytical solutions are usually limited to 

geometries possessing some forms of symmetry. Their usefulness is, therefore, very limited 

in practice. A significant amount of effort has been devoted to the development of numerical 

solution methods since the advent of computers. Various numerical techniques, such as 

finite difference method (FDM), finite element method (FEM), and boundary element 

method (BEM) have achieved great success in solving electromagnetic problems. The FDM 

was of great use in the early age of computers. Stoll [5], Muller [7], Wiak and Zakrzewski 

[8] applied FDM to eddy current problems and extended the life of FDM to 1980s. Due to 

the lack of flexibility in dealing with irregular geometries, the popularity of FDM has 

declined in the last few decades. Since 1970s, FEM has dominated the numerical modeling 

of eddy current problems. Chari [9], Carpenter [10], Silvester and Ferrari [11] are among the 



www.manaraa.com

6 

earliest to apply FEM techniques to eddy current modeling. Numerous papers have been 

published since then. The names of researchers in this area should be supplemented by 

Bossavit and Verite [12], Salon and Peng [13], Preston and Reece [14], Rodger, Leonard, 

Eastham [15,16], Trowbridge [17], Simkin [17,18], Emson [18], Biro [19], Ren [20,21], 

Wong and Cendes [22,23], Albanese and Rubinacci [24], Kameari [25,26], Nakata [27,28], 

and many others. Besides FEM, the BEM has also gained great importance and much 

attention since 1970's. References concerning BEM and eddy currents can be found in the 

works of Salon and Schneider [29], Kost [30], Rucker and Richter [31], Tsuboi and Misaki 

[32], and so on. The main advantage of the BEM is that the dimension of a problem can be 

reduced from three to two for a 3-D problem or from two to one for a 2-D problem. The 

disadvantage is that, unlike the FEM, the resulting matrices are full and usually 

nonsymmetrical. The FEM and BEM are often combined to form a hybrid formulation, 

which greatly reduces the computation effort [12,33]. 

Among the numerical techniques, the FEM appears to be the most popular one for 

eddy current computations [34]. The FEM has evolved from structural analysis. Its basic 

ideas date back to 1940's and can be found in the works of Hrenikoff [35], Courant [36], 

McHenry [37], and Levy [38]. The phrase "finite elements" was the contribution of Clough 

[39] in 1960. The basic idea is to divide the solution domain into large numbers of small 

regions, called finite elements, and interpolate the unknown field with a set of predefined 

linearly independent basis functions. Then, an approximation of the unknown field is 

expressed by a set of interpolation coefficients. These coefficients are obtained by solving a 

linear system through the finite element formulation. The finite element method has become 

an important and powerful analysis tool for addressing eddy current problems. It is also 
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widely used in such diverse areas as mechanical structure analysis, fluid mechanics, heat 

flow, and other areas of computational electromagnetics. 

Much work has been done in studying eddy current testing techniques both 

qualitatively and quantitatively. Detailed analysis of the underlying theories of eddy current 

testing can be found in the works of Burrows [40], Dodd and Deeds [41], Lord and 

Palanisamy [42]. The application of FEM in the study of eddy current NDT was pioneered 

by the work of Palanisamy and Lord [43,44], Nehl and Demerdash [45]. FEM and other 

numerical techniques made the quantitative studies of eddy current NDT in practical 

applications possible. Now eddy current methods are widely used particularly in the aircraft 

and nuclear industry. They are employed for detecting surface and subsurface cracks and 

corrosion in aircraft structure, jet engine disks, turbine rotor blades and so on. 

1.3 Forward and Inverse Problems 

Two kinds of problems are of interest in NDE applications. These problems are 

referred to as the forward problem and the inverse problem. The forward problem deals with 

the prediction of a transducer's response given an excitation source and the material 

properties of the test specimen. In contrast, inverse problems are concerned with the 

estimation of the material properties of the specimen based on the measured transducer 

responses. All NDE problems in reality are inverse in nature, but a good forward model 

helps, among other things, in understanding the underlying physics and improving the system 

design. The forward problem in eddy current NDE involves, in essence, the solution of 

Maxwell's equations. Both analytical methods and a variety of numerical techniques can be 

used to address the forward problem. 
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Rapid developments in computing facilities and technology have also made model 

based inverse problem solution methods attractive to scientists and engineers. Many inverse 

problem methodologies have been developed and applied to solve real life problems. In eddy 

current NDE applications, the inverse problem is related to the task of characterizing the size, 

shape and location of defects based on the information contained in coil impedance signals. 

Most of the approaches in industry use a combination of signal processing and pattern 

recognition methods to establish a relationship between a set of parameters characterizing 

defects and specific features of the signals. Artificial neural networks (ANN) are used 

widely to determine the relationship [46-52], An ANN can be viewed as a mapping from an 

input vector to an output vector. The mapping may be highly nonlinear and is determined by 

weights in the network. An ANN learns the desired mapping through given data patterns 

(input-output pairs), which may come from actual measurements or the solution of the 

corresponding forward problem. Fig 1.3 shows a typical ANN. In eddy current signal 

inversion, the input to the network is the eddy current probe signal and the output is the set of 

defect parameters. An FEM forward model can be used to generate the signal patterns for 

training the network. This allows the exploitation of the analytical capability of the FEM and 

the mapping capability of the ANN. An ANN builds a functional relationship between the 

input and output data sets. However, the underlying physics of the real problem is ignored 

by the network. In Fig 1.3, the input-output data patterns may be eddy current signals, 

ultrasonic signals or something else. The ANN is blind to the input source and is merely 

capable of extracting a relationship between the input and output signals. The approach is 

therefore purely non-phenomenological in nature. It requires large amount of training data, 

which is not always available in practical applications. Applications of non-
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phenomenological methods in NDE signal inversion can be found in the works of Hoole 

[46], Udpa et al [47], Badics et al. [48], Popa and Miya [49], Sikora et al. [50], Rubinacci et 

al. [51], loan and Duca [52], and so on. 

Unlike non-phenomenological approaches, phenomenological or model-based 

approaches embed the underlying physics into the signal inversion process. Such an 

approach usually involves a forward model and an error minimization algorithm. Fig 1.4 

shows a typical scheme for characterizing defect profiles from measured NDE signals. The 

model takes a set of measured signals as input. It begins with an initial guess of the desired 

defect profile or a set of potential profiles. A forward model is employed to simulate the 

physical process and predict the response of the NDE system. An objective function is 

defined to describe the difference between the predicted signal and the measured signal. By 

iteratively updating the defect profile, a minimum value of the objective function, may be 

reached. A lot of methods may be used in minimizing the objective function. The 

minimization approaches can be generally cast into two categories: the deterministic 

approach and the stochastic approach. Popular examples of the deterministic approach 

include the conjugate gradient and quasi-Newton methods. These methods require the 

evaluation of the gradient as well as the value of the objective function. When multiple 

parameters are involved, the computation effort associated with the gradient computation can 

be very high. Typical stochastic approaches are the simulated annealing method and genetic 

algorithms. These methods do not require the gradient information as prior information. A 

major difference between the two kinds of methods is that the behavior of the deterministic 

approach highly depends on the local property of the function being minimized. It tends to 

converge to a poorer local minimum and produce a result that depends on the initial trial 
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Fig 1.3 An artificial neural network 

Initial Defect 
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Experimental 
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Fig 1.4 An iterative signal inversion scheme 
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solution. So, such kind of method is also termed a local technique. On the contrary, a 

stochastic optimization method does not rely on the local property of the function being 

optimized and its result does not depend on the starting point. It even works well for 

nondifferentiable or discontinuous functions. Such a global technique is especially useful in 

finding a global minimum among numerous poorer local minima. Applications of 

phenomenological methods to NDE signal inversion can be found in the works of Oristaglio 

and Worthington [53], Salon and Istfan [54], Hoole et al. [55], Norton and Bowler [56,57], 

Neittaanmaki et al. [58], Udpa [59,60], Albanese and Rubinacci [61], and so on. 

1.4 Objectives of This Research 

Conventional node-based finite element methods are intrinsically suitable for 

analyzing scalar fields. When applying them to electromagnetic field computations, the 

unknown vector field, such as electric field intensity, magnetic flux density or magnetic 

vector potential, has to be decomposed into its three Cartesian components. Due to the very 

nature of nodal interpolation, all three components of the vector field are continuous across 

element boundaries. When dealing with material interfaces, it violates the boundary 

conditions in electromagnetics, which enforces the continuity of either tangential or normal 

components. To relax the continuity requirements of node based finite elements, the edge 

based finite element method was proposed. Instead of assigning degrees of freedom to 

element nodes, edges are used to interpolate the unknown vector field. The basis functions 

associated with edges are vector functions. Thus edge elements are vector oriented. In 

addition to the relaxed continuity requirement, edge elements offer many other useful 

properties [62]. They have been widely accepted by many researchers in the computational 



www.manaraa.com

12 

electromagnetics community [24]. In this research, an edge-based finite element forward 

model is developed and its effectiveness is verified with a well-known benchmark problem. 

The model is employed to simulate the eddy current phenomenon and predict the eddy 

current testing signals obtained in the nondestructive inspection of heat exchanger tubes. 

The edge based finite element forward model is then embedded in a model based 

NDE signal inversion scheme. Both the gradient search approach and stochastic approaches 

are investigated for characterizing defect profiles from eddy current signals. The main 

difficulty in applying a gradient based minimization algorithm to signal inversion lies in the 

fact that the method for gradient computation calls for solving the governing linear system 

once for each of the partial derivatives. This makes the computation time prohibitively long 

in multi-dimensional minimization. An adjoint equation based method is used to address the 

problem [56,64], By introducing a set of Lagrangian multipliers, all the derivatives required 

by the minimization algorithm could be found by solving the linear system only once, no 

matter how many parameters are involved. This significantly reduces the computation time. 

However, the gradient search method is a local technique. It produces a solution that 

depends highly on the initial staring point. In order to avoid some of these problems, 

stochastic methods are used to find a global minimum of the objective function. A simulated 

annealing and a genetic algorithm are used in characterizing defects in heat exchanger tubes. 

The stochastic algorithms do not require the gradient of the objective function to work, but 

the function itself has to be evaluated repeatedly. They usually have a heavier computation 

burden than gradient search methods. A comparison of performance of the gradient search 

and stochastic methods for NDE signal inversion is presented. 



www.manaraa.com

13 

1.5 Literature Review 

Numerous papers have been published on eddy current flaw detection. Space 

considerations preclude a full review of all related work here. Only those that are closely 

related to this research are reviewed in this section. 

This research employs an edge based finite element model to simulate the eddy 

current NDT phenomenon. Edge elements were first proposed in 1980 by Nedlec [65] and 

have been gradually accepted by the computational electromagnetics community [24]. 

Bossavit [66] provides a justification for the use of edge elements in electromagnetic field 

computations. Webb [62] discusses the basic properties of edge elements and their 

advantages over node based counterparts. Kameari [67] presents an implementation of edge 

elements based on Â -V and Â -V-Y formulation. The equivalence of the two formulations 

to Â formulation implemented with edge elements is shown. The problem of uniqueness is 

overcome with the help of tree and co-tree separation from graph theory. The same gauge 

method is also used in Albanese and Rubinacci's work [68,69]. 

Neittaanmaki et al [58] gives a comprehensive review of inverse solution methods 

and presents several examples of their use in electromagnetic component design. The text 

covers several topics relating to the computer implementation of these algorithms. Since all 

inverse problems are ill-posed in nature, regularization schemes, necessary to ensure the 

existence, uniqueness and stability of the solution, are introduced. Isakov [70] also discusses 

the uniqueness and stability issues encountered in solving inverse problems. 

Oristaglio and Worthington [53], and Hoole et al [55] were among the earliest to 

propose inverse methods using a numerical forward model and an error minimization 

algorithm. Oristaglio and Worthington solve a 2D inverse problem using an optimization 
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tool based on gradient information in combination with a FEM forward model. Hoole 

introduces an inverse problem method for the identification of cracks, sources, materials, and 

their geometry in inaccessible locations through the geometric differentiation of finite 

element matrices. A general approach, which employs a finite element forward model and a 

gradient based minimization algorithm, is presented. Two problems are reported. First, 

multiple minima are possible with the objective function. Second, they show an over 

described crack may result in nonconvergence of the minimization algorithms. 

Numerous approaches to defect characterization have been proposed in recent years. 

Y an et al [59] applies the signal inversion scheme shown in Fig 1.4 to 2-D defect 

characterization problems involving analysis of magnetic flux leakage signals. Ng [63] and 

Liu et al [60] extend the method to eddy current signal inversion. A Â formulation node 

based finite element model and a conjugate gradient minimization algorithm are employed. 

The method is applied for predicting the defect profiles in heat exchanger tubes. The defect 

profile is described as a 8-node quadrilateral element. An axisymmetric geometry is assumed 

and a finite difference approximation is used to calculate the gradient of the objective 

function. This approach consumes significant computation resources for calculating 

gradients and suffers from problems due to round off errors. Albanese et al [61] propose a 

model for characterizing crack shapes using an integral computation model implemented 

with edge elements. A genetic algorithm is employed to minimize the error function. In this 

model, the crack shape is described as a binary bitmap, i.e. element facets within the defect 

zone either belong to the crack or not. Kojima et al [71] and Fukutomi et al [72] use the trust 

region method to determine crack shapes. The crack shape is represented as a spline 

function. 
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1,6 Scope of The Dissertation 

This dissertation presents a thorough discussion, from theory to computational 

aspects, on the numerical simulation of eddy current problems based on magnetic vector 

potential formulation, implemented with edge based finite elements. This dissertation also 

investigates the application of gradient based minimization methods and stochastic 

minimization algorithms to eddy current NDE signal inversion. 

The dissertation consists of 7 chapters. The first three chapters introduce the 

necessary theoretical background. Chapter 1 introduces the background relating to eddy 

current testing and simulation. Chapter 2 gives a brief review on basic electromagnetic 

theory. Only topics that are closely related to eddy current computation are included. 

Chapter 3 introduces conventional node based finite elements. Topics include various 

aspects of the implementation of a typical finite element analysis, such as common finite 

element types, basis functions, Galerkin's approach and weak form, assembly, and linear 

solvers. Chapter 4 to 6 covers the main topics of the dissertation work. Chapter 4 deals with 

the implementation of À formulation using edge based finite elements. A gauge condition 

based on tree and co-tree separation is introduced to fix the arbitrariness associated with À. 

The model is verified with both magnetostatic and eddy current problems. Chapter 5 

introduces a gradient based approach for eddy current NDE signal inversion. An adjoint 

equation based method is presented to evaluate the gradient of the objective function. The 

limitation of the gradient search methods is also discussed. Chapter 6 presents stochastic 

methods to find a "near" global minimum of the objective function. A genetic algorithm and 

a simulated annealing algorithm are discussed. Chapter 7 contains concluding remarks and 

discusses future work. 
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CHAPTER 2 BASIC ELECTROMAGNETICS FOR EDDY CURRENT 
COMPUTATION 

2.1 Introduction 

This chapter begins with a brief review of Maxwell's equations and related topics, 

and then discusses three formulations for eddy current computations. Only those topics that 

are closely related to this research are included. For a more detailed introduction on 

electromagnetic theory, interested readers may refer to [2] and [3], 

2.2 Maxwell's Equations 

The variables that are used to describe electromagnetic fields are the following five 

vectors and one scalar: 

Ê electric field intensity ( volt/meter) 

H magnetic field intensity ( ampere/meter ) 

D electric flux density ( coulomb/meter3 ) 

B magnetic flux density ( tesla ) 

J electric current density ( ampere/meter2 ) 

p electric charge density ( coulomb/metre3 ) 

These variables may be both functions of space coordinates x, y, z and time t. They are 

related by the well-known Maxwell's equations, which are the basis of electromagnetic 

theory. The differential form is expressed as follows: 
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V x H = J + — 
ôt 

V • D = p 
VB = 0 

(2.2) 

(2.3) 

(2.4) 

An important equation, the continuity equation, is derived from equations (2.2) and (2.3), 

VJ + % = 0 (2.5) 
dt 

It says the net flow of electric current out of a small volume equals the time rate of decrease 

in electric charges. 

2.3 Constitutive Relations 

The following constitutive relations describing the material properties of a medium 

are usually added to the Maxwell's equations, 

where e (farads/meter) is the electric permittivity of a medium, (henries/meter) is the 

magnetic permeability and a (siemens/meter) is the electrical conductivity. The above 

constitutive relations apply to isotropic, linear and nondispersive materials. In the general 

case, a material may be both anisotropic and nonlinear. These property parameters should be 

tensors, expressed as matrices mathematically and their values depend on the field values. In 

this report, we consider isotropic and linear materials only. The hysteresis of ferromagnetic 

material is also ignored. Consequently, the three parameters are considered as scalar 

constants for a particular material. 

D = £E 

B = fiH 

J = aE 

(2.6) 
(2.7) 

(2.8) 
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2.4 Boundary Conditions 

The Maxwell's equations should be satisfied everywhere in space, including the 

interface joining different materials. Applying equations (2.1) - (2.4) to the material 

interface shown in Fig 2.1 gives the boundary conditions: equations (2.9)-(2.l2), 

S 2 , f i 2  

Fig 2.1 A boundary between two materials 

( Ë „  - Ê , ) x n = 0  ( 2 . 9 )  

(Al l - H , ) x n  =  Js (2.10) 

( B „  - B , )  n = 0  ( 2 . 1 1 )  

(d„ -D,)-n = /?s (2.12) 

where n is defined as the unit vector normal to the interface and pointing from medium 1 to 

medium II. This implies that only the tangential component of the electric field intensity E 

and the normal component of the magnetic flux density B are always continuous on inter-

material boundaries. The discontinuity of the tangential component of H and the normal 

component of D are characterized by the surface current Js and the surface charge ps. 
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2.5 Time-Harmonic Fields 

Time-harmonic analysis plays an important role in various engineering applications. 

A time-harmonic quantity refers to a variable which varies sinusoidally with time. In the 

case that we are interested in the steady state reached when a system is excited sinusoidally, 

the variables describing the system can be considered as time-harmonic quantities. A time-

harmonic quantity can be expressed in exponential form 

Then, the partial differential operator 5/51 acting on a time-harmonic quantity is simply )(o. 

So, for time-harmonic fields, the Maxwell-Faraday's law (2.1) and Maxwell-Ampere's law 

(2.2) become 

In this way, a time domain problem can be considered in the frequency domain. 

2.6 Quasistatic Approximation 

As can be seen from equations (2.2) or (2.14), there exist two kinds of currents: 

conduction current and displacement current. The conduction current is proportional to the 

electric field intensity, as stated by Ohm's law, 

The displacement current is defined as the time varying rate of electric flux density. 

E(t)=Épexp(jû*). 

V x E = -j coB 

Vx H = J + jo)D 

(2.13) 

(2.14) 

J = oE (2.15) 
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In many circumstances, the time varying rate is low enough such that a» cue . In such a 

case, the displacement current can be neglected and the quasistatic approximation is said to 

apply to the Maxwell-Ampere's law, i.e. 

Consequently, in steady state, electric current density is divergence free, since there is no 

accumulation of net charges. 

2.7 Potential Functions 

The Maxwell's equations consist of a group of four equations coupled by multiple 

variables. It can be very difficult to deal with. Potential functions are usually introduced to 

reduce the number of equations and variables. The following two vector identities are often 

used to define the potential functions. 

V x W  =  0  ( 2 . 1 9 )  

V - V x Â  =  0  ( 2 . 2 0 )  

They states that the gradient of an arbitrary scalar function is irrotational and the curl of an 

arbitrary vector function is solenoidal provided these functions are sufficiently differentiate. 

Magnetic Vector Potential. From equation (2.4) and (2.20), the magnetic flux 

density B can be expressed as the curl of a vector function. 

V x H  =  J  (2.17) 

This equation implies (see equation (2.20)) 

V - J  = 0  (2.18) 

B  =  V x A  (2.21) 

The vector function A is termed the magnetic vector potential. 
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Electric Scalar Potential. Substituting equation (2.21) into (2.1) results in the 

following equation: 

' s * * '  = 0 

Invoking equation (2.19), the electric field intensity can be expressed as follows: 

3Â 
E = - —-VV (2.22) 

dt 

where V is an scalar function, termed the electric scalar potential. 

Electric Vector Potential. In a truly steady state case, V - J = 0 (see section 2.6). A 

potential function f, therefore, can be introduced to represent current density. 

J  =  V x T  ( 2 . 2 3 )  

T is termed the electric vector potential. 

Magnetic Scalar Potential. Consider equation (2.17). In a current free region, the 

magnetic field intensity H becomes curl free. Thus, a scalar function can be used to 

represent H. 

H = -Vct> (2.24) 

O is termed the magnetic scalar potential. 

Except the electric scalar potential, all other three potential functions do not possess 

any physical sense. They are introduced just to facilitate the analysis of electromagnetic 

fields. 
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2.8 Eddy Current Formulations 

In eddy current problems, the time fluctuation rate is low enough for the quasistatic 

condition to apply. Figure 2.2 shows a typical configuration of eddy current problems. The 

solution domain Q is divided into a conducting region Q, and a nonconducting region Q2, 

which may include the excitation current source Js. 

Invoking equations (2.15) and (2.22), equation (2.17) becomes 

V x — V x A  +  c r  —  +  o W  =  0  i n Q ,  ( 2 . 2 5 )  
fj. dt 

V x — V x Â  =  J .  i n Q ,  ( 2 . 2 6 )  

Then an eddy current problem is described by the magnetic vector potential and electric 

scalar potential through the above two equations. Equation (2.21) specifies the curl of the 

magnetic vector potential as the magnetic flux density. Helmholtz theorem states that a 

vector field is uniquely determined only if both its curl and divergence are specified. 

Therefore, the divergence of the magnetic vector potential must be specified to fix the 

additional degrees of freedom associated with Â. This value may be specified freely without 

affecting the physical problem. In many circumstances, the divergence free condition is 

often imposed, i.e. 

V - Â = 0  ( 2 . 2 7 )  

This is the well-known Coulomb gauge. Interested readers may refer to [73] for other forms 

of gauge conditions, such as the diffusion gauge and Lorentz gauge. 

Suppose the magnetic permeability is piecewise constant. Using the following vector 

identity 
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• 
cr2 = 0,//: 

Fig 2.2 A configuration for eddy current problems 

V x V x À = v(v • À)- V2Â 

and the Coulomb gauge, equations (2.25) and (2.26) reduce to, 

(2.28) 

V2Â + <x — + OVV=0 
<9t 

inQ. (2.29) 

(2.30) -V2Â = J S  inQ, 

where V2 is the vector Laplacian operator 

V2Â = XV2A. + vV:Av + ZV2A, 

A -V Formulation. In Â -V formulation, the magnetic vector potential Â and 

electric scalar potential V are used to represent the electromagnetic field in the conducting 

region Q,. while in the nonconducting region Q,, only À is used. It is also called Â-V-Â 

formulation in literature [17]. The eddy current density is expressed as 

J = -ex 
z d A  

a 
+ w 

In equation (2.25), the divergence free condition of the eddy current density (see section 2.6) 

is automatically satisfied. However introducing Coulomb gauge in equation (2.29) violates 

the condition. It must, therefore, be enforced explicitly. Thus, 
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V-a 
r d k  

dt 
W = 0 in Q. (2.31) 

Interface conditions must also be enforced at the interface r,2 between Q, and Q2. since 

eddy currents are restricted in conducting region only, at the interface r,2, 

J n = a ÔA 

dt 
- w •n = 0 (2.32) 

Equations (2.31) and (2.32), together with (2.29) and (2.30), form the A-V formulation of 

eddy current computation. It is listed below: 

-V-À + 0- —+ oVV=0 
dt 

v - f f f — •  
{at 

-v2Â = l  

X 
vv = 0 

J -n = a ̂ Ê.vv 
v a 

-n = 0 

inQ, 

inQ, 

inQ2 

on r12 

(2.33) 

A Formulation or Modified A Formulation. It's possible to define a modified 

magnetic vector potential Â* [18] as 

Â' =A+ Jwdt 

Obviously, 

V x Â  =  V x  Â  =  B  

(2.34) 

Equations (2.25) and (2.26) can be expressed solely in terms of À 

V x - V x Â '  + ( T — =  0  
ju dt 

V x — V x A = Js 

inQ, 

inQ. 

(2.35) 

(2-36) 
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Similarly, Coulomb gauge can be imposed to render a unique solution for A*. Comparing 

equations (2.25) and (2.26) with (2.35) and (2.36), it seems as if the electric scalar potential 

V is eliminated. This formulation is also known as A formulation and the * sign is often 

omitted. Equations (2.35) and (2.36) can be combined into one equation 

V x —  V x Â  +  c r —  =  J s  i n  Q  ( 2 . 3 7 )  
H dt 

In Q,, Js = 0 and in Q2, a = 0. With Â formulation, eddy current density is expressed in 

terms of Â. 

J  = -ex— (2.38) 
dt 

Obviously, J is solenoidal since the Coulomb gauge is imposed. 

Â-V-Y Formulation. In the Â-V and Â formulations, a vector potential is 

employed in the nonconducting region fi2. In reality, a scalar potential is sufficient. This 

reduces the number of unknowns from three scalars to one. Suppose Hs is the magnetic 

field generated by the current source Js. 

V x H s =J s  

A can be determined from Biot-Savart's law. 

< 2»> 

v 4/rfV 

The magnetic filed intensity H satisfies the following equation 

Vx(H-Hs)=0 
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Consequently, a scalar potential function can be introduced in the current carrying region 

H = H -VT (2.40) 

where i[/ is called reduced magnetic scalar potential function in literature and the potential 

function <t> introduced in last section is termed total magnetic scalar potential [16,18,25]. 

Substituting equation (2.40) into (2.4) results in the following equation: 

V/ / (H S -VT)=0  inQ, (2.41) 

At the interface fl2, the normal continuity of magnetic flux density and the continuity of 

current density must be enforced, i.e. 

( V x X ) n  =  l ( A s - V 4 ' ) - n  

o j ^  +  v v ) - n = 0  

(2.42) 

(2.43) 

Equations (2.29), (2.31 ) and (2.41 ), together with interface conditions (2.42) and (2.43) 

constitute the Â-V-i|/ formulation, which is listed below, 

-V2A + <T — + OW=0 
dt 

V (T 
r ô À  

dt 
+ W = 0 

V-//(HS -V4/)=0 

( V x Â ) - n  =  l ( H s - V 4 ' ) - n  

zdÂ 

dt 
VV n = 0 

infi, 

inQ, 

inQ, 

on r,2 

on rl2 

(2.44) 
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In conducting region Q,, À and V can be combined into À to form a Â* -\\i formulation 

[18]. 

The Electric vector potential f has also been used in eddy current computations. The 

f -\\i formulation can be derived similarly [14]. 

A differential equation must be accompanied by appropriate boundary conditions to 

render a unique solution. Boundary conditions must be added to the above formulations to 

form a complete problem description. Boundary conditions will be introduced in the next 

chapter. 
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CHARTER 3 BASICS ON FINITE ELEMENT METHOD 

3.1 Introduction 

The finite element method (FEM) is a numerical technique for obtaining approximate 

solutions to various partial differential equations in science and engineering. The need for 

numerical methods lies in the fact that exact analytical solutions to many real problems are 

prohibitively difficult to find because the geometry or some other features of these problems 

are too irregular. Several numerical techniques have been developed in the past few decades, 

such as finite difference method and finite element method. Among these, the FEM is 

probably the most widely used method in almost every engineering area. This chapter gives 

a brief review of the basic idea underlying the FEM. Interested readers may refer to [73] and 

[74] for a more detailed coverage. 

3.2 Finite Elements and Basis Functions 

FEM involves the discretization of the solution domain into a large number of small 

regions, called finite elements or simply elements. The unknown function is interpolated 

with a set of predefined, linearly independent basis functions and these basis functions are 

defined over the finite elements. The discretized solution domain consists of elements, nodes 

and line segments, called a finite element mesh. There are many different types of finite 

elements. Several commonly used element types and basis functions are introduced in this 

section. 

1-D Line Element. In one-dimensional problems, the solution domain is discretized 

into a number of line segments, each of which is called a 1-D line element. A 1-D line 
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element has two nodes: the end nodes of the line segments. As an example, Fig 3.1 is a 1-D 

mesh, where the solution domain a < x < b is divided into four elements. Adjacent elements 

connect to each other at the nodes. Every node has a local number, which is numbered 

within an element, and a global number, which is numbered in the entire mesh. In Fig 3.1, 

there are five global nodes in the mesh. Their global numbers are 1,2,3,4, and 5. In each 

element, the local numbers of the two nodes are 1 and 2. The relation between local 

numbering and global numbering is built into a table, called connectivity table, shown in 

Table 3.1. For example, Table 3.1 shows that node 1 of element 3 has a global number 3 and 

node 2 has a global number 4. 

A basis function is associated with each node of an element. 

N,(x)=^^ 
u 2 - u ,  

N,(x)= (3.1) 
u 2 - u ,  

Fig 3.2 shows a plot of the two basis functions associated with the two nodes of a 1-D 

line element. These two basis functions, N,(x) and N,(x) are defined within an element 

and thus termed local basis functions. They have an important property: 

N,(u,) = 1 ; N,(U2) = 0; N2(U, ) = 0 ;  N2(U2 ) = 1  

Within an element, an arbitrary function f(x) can be interpolated with the two basis 

functions as 

f(x)=f,N,(x)+f2N2(x). 

Thus, f(x) is approximated by a linear function, as shown in Fig 3.3. The global basis 

functions, which are defined in the entire mesh, are easily obtained by combining each local 
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a = x, 

2 3 4 5 

* * * * 

x. X; / x,/ J*
 il <T
 

u, u, 

X 

Fig 3.1 A 1-D mesh consisting 
of line elements 

Table 3.1 Connectivity table 
for the 1-D mesh in Fig 3.1 

Element 
Number 

Node 1 Node 2 

1 1 2 

2 2 3 

3 3 4 

4 4 5 

N i (x ) 

u, u, 

N;(x) 

u, u, 

Fig 3.2 Elemental basis functions 
for a 1-D line element 

Fig 3.3 Linear approximation of function 
f(x) within a line element 

basis function associated with a global node. Fig 3.4 shows a plot of the five global basis 

functions associated with the five nodes in figure 3.1. The relation between global and local 

basis functions is easily seen from the function plots. Each global basis function n,(x) 

extends to neighboring elements and has the same property as local basis functions. 

-w-{ê 

Similarly, combining the approximation of function f(x) in each element shown in Fig 3.3 

gives an approximation of f(x) in the entire solution domain, as shown in Fig 3.5. Function 
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n,(x) 

n2(x) 

K 
I \ i i i > 

yx 
•A ^ i i > 

"4<x) /X 
1 i r i—A—> 

"=(X) y/| , 
• • • r I > 

X, x, x3 x4 x5 

Fig 3.4 Global basis functions for the mesh in Fig 3.1 

Fig 3.5 Piecewise linear approximation of f(x) on the domain shown in Fig 3.1 
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f (x) is then expressed as: 

f(x)= f,n,(x)+ f2n2(x)+ f3n3(x)+ f4n4(x)+ f5n5(x). 

Therefore, given a set of basis functions, an arbitrary function f(x) is uniquely determined 

by a set of coefficients f,, f2, f3, f4, and f5, and function f(x) is approximated by 

piecewise linear line segments. It's easy to verify that these coefficients are actually the 

values of the function f (x) at every node. As the number of elements increases, the 

piecewise linear approximation becomes closer and closer to the original function. 

2-D Triangular Element. A three-node triangular element is commonly used to 

discretize the geometry of a two dimensional problem. Fig 3.6 shows a triangular element. 

The basis functions associated with node 1, 2, and 3 are given below: 

N,(x,y)=-^-(a, +b,x + c,y) 
2Â 

N:(x>y)=~-(a2 +b2x +c2y) 
2A 

N3(x,y)=^-(a3+b3x+c3y) (3.2) 
2A 

where 
1 x, y, 

2A = 1 x2 y2 

1 x3 y3 

a ,  = x 2 y 3 - x 3 y 2  b , = y 2 - y 3  c ,  = x , - x 2 .  

The other coefficients are obtained by cyclically permuting the subscripts. A is the area of 

the triangular element. In Fig 3.6, the three nodes are numbered counterclockwise. If 

ordered clockwise, a minus sign should be added to A. The above basis functions are local 

basis functions. The concept of local numbering, global numbering and connectivity table all 

apply to 2-D triangular elements and other element types. The global level basis functions 
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(x3 ,y3) 

(x,,y,) 

X 

f(x,y) 

"7 
-> 

X 

Fig 3.6 A triangular element 
Fig 3.7 Piecewise plane approximation of a 

2-D function over a triangular mesh 

are obtained similarly as in 1-D line element. With 2-D triangular elements, an arbitrary 2-

dimensional function f(x. y) is approximated as piecewise planes over a triangular mesh, as 

shown in Fig 3.7. 

3-D Telrahedral Element. A four nodes tetrahedron is shown in Fig 3.8. It's a 

common 3-D element type. The local basis functions are: 

NJ(x.y.z) = ^_(aJ +bJx4-c,y + dJz). j = l,2,3,4 (3.3) 

where 

6V = 

1 X, y. z 

1 x: y: z 

1 X3 y3  z 

1 x4 y4  z 

and 

x2 y2 z2 1 y2  
zz Xz 1 Z2 x2  y2  1 

a, = x3 y3  z3  »  b ,  = -1 Yl Z3 
c i  = - x3 1 z3 d ,  = - x3  y3  1 

x4  y4  Z4 1 y4  
z4 X4 1 Z4 x4  y4  1 
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a z 
4 (x4.y4.Z4) 

(x,,y,.; 
(x 

y 

1 

(x„y„z,) 

(x2,y2,z;) 

7 X 

Fig 3.8 A tetrahedral element 

The other coefficients are obtained through a cyclic permutation of the subscripts 1,2, 3, and 

4. V is the volume of the tetrahedron formed by nodes 1,2,3, and 4. The tetrahedron is 

defined such that nodes 1. 2. and 3 are numbered counterclockwise when viewed from node 

4. 

Summarizing the above discussion, the solution domain of a finite element analysis is 

discretized into finite elements. A basis function is associated with each node of the finite 

element mesh. An arbitrary function defined over the solution domain is then approximated 

by an interpolation with the basis functions. The unknown function is uniquely determined 

by the set of interpolation coefficients. The values of these coefficients are the values of the 

function at the nodes of the finite element mesh. The purpose of a finite element analysis is 

to find these coefficients. We'll see later that these interpolation coefficients can be found by 

solving a linear system. 

The above three types of finite elements and their basis functions have the following 

common properties: 

1. There exists a basis function for each node of the element and these basis 

functions form a linearly independent set. The local basis function is defined 
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within an element. The global basis function extends to all elements which share 

the common node. 

2. Ni(xi)=|j> i, j = 1,2,... M (3.4) 

nj(xJ)={j) i, j = 1,2,... NNP (3.5) 

where N, is the local basis function and n; is the global basis function; M is the 

number of nodes in an element and NNP is the total number of nodes in the mesh. 

The value of N, or n, changes linearly from node i to node j. 

3. Basis functions are continuous on inter-element boundaries. 

4. An arbitrary scalar function fin an element can be interpolated with the local 

basis functions as 

f - l W  ( 3 6 )  
H 

An arbitrary function over the discretized solution domain can be expressed in 

terms of the global basis functions. 

NNP 

f = I f , n ,  ( 3 . 7 )  
H 

These properties are also the basic principles for constructing the finite elements and their 

basis functions. The three types of finite elements introduced in this section possess linear 

basis functions and the basis functions are continuous across elements. Thus, they are termed 

first order elements. In some applications, besides the continuity of the unknown function, 

the first order or even higher order derivatives are required to be continuous across element 
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interface. In such cases, higher order elements are constructed. However they greatly 

increase the storage and computation time and therefore seldom used. Interested readers may 

refer to [75] for other types of elements and basis functions. 

3.3 The Weak Form and Galerkin's Approach 

A differential equation must be accompanied by appropriate boundary conditions to 

render a unique solution. Consider the following boundary value problem, described by 

Poisson's equation: 

<3n 

where S, u S: = dCl and S, nS, = 0. Q is the solution domain and <3Q is its boundary, 

which is divided into S, and S:. Equation (3.9) specifies the value of the unknown field on 

boundary S,. This kind of boundary conditions is known as Dirichlet condition. If a = 0, 

equation (3.10) reduces to 

%- = h on S, (3.11) 
on 

This kind of boundary condition specifies the value of the derivative of the unknown function 

and is known as Neumann condition. Equation (3.10) includes both the unknown function 

and its derivative. It is called Cauchy condition or mixed condition. The problem described 

by equations (3.8)-(3.10) is termed a classical problem. Its analytical solution is called a 

classical solution. 

V:u = f(x.y,z) 
u = g 

in Q 

on S 

(3.8) 

(3.9) 

on S, (3.10) 
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To ease the treatment of boundary conditions, first consider the following 

homogeneous Dirichlet condtion on S, : 

u = 0 on S, (3.12) 

The finite element method does not solve the classical problem directly, but rather solve the 

corresponding weak problem. That means it seeks a solution which satisfies equation (3.8) in 

a weak sense or in an average sense. The weak problem corresponding to the above classical 

problem is stated as follows: 

Obtain a solution u which satisfies the weak form: 

jjjv2 u - w d v  =  j j j f ( x . y . z ) - w d V  ( 3 . 1 3 )  
n n 

In the above equation, u e F is a trial solution and w e F is an arbitrary test function. F is a 

functional space which is sufficiently smooth, square integrable and satisfies the 

homogeneous Dirichlet boundary condition (3.12). Invoking Green's formula, equation 

(3.13) becomes 

f f f V u  •  V w d V  =  f f w — d S +  f f w  — — d S  —  f f f f ( x , y , z ) - w d V  ( 3 . 1 4 )  
a I3 5n iJ dn JJJ 

Because the test function w satisfies the homogeneous Dirichlet condition on S,, the first 

surface integral on the right hand side vanishes. Substituting Cauchy condition into the 

above equation, equation (3.14) reduces to 

JJjVuVwdV = jjw(h -ou)dS— JjJf(x,y,z)-wdV (3.15) 
n s: n 

Since the Dirichlet condition is imposed on the functional space F, it is also called an 

essential boundary condition. Since the Neumann condition and the Cauchy condition are 
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satisfied by the weak form naturally, they are called natural boundary conditions. It is easy 

to verify that any classical solution satisfies equation (3.15) and vice versa. 

To find an approximate solution to the weak problem, the FEM begins by discretizing 

the solution domain into finite elements and restricting the functional space F to be a finite 

dimensional space Fh. The discretized weak problem seeks a solution uh which satisfies the 

following discretized weak form, 

where Qh and SÏ are the discretized solution domain and its Cauchy boundary. Suppose the 

cardinality of Fh is N and n,, j = 1,2,...N, is a set of basis of Fh. Then a trial function uh 

can be expressed as, 

Since the test function wh is an arbitrary function from the functional space Fh, it is enough 

to require that equation (3.16) is satisfied for every basis of Fh. Substituting equation (3.17) 

into equation (3.16) and letting wh = n; for i = 1,2, ...N results in the following equation: 

(3.16) 

u h  = 5 > j n i  (3.17) 

i = l,2,...N (3.18) 

This is a linear system. Expressing it in a matrix form, 

[A]-[u] = [b] (3-19) 

Equation (3.19) is the finite element equation. The coefficient matrix [A]nxn = [aj is called 

the stiffness matrix and the right hand side [b]„x| = [b, ] is called the load vector, [u],,,, = [u, ] 
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is the unknown vector, which is the set of interpolation coefficients in equation (3.17). So, 

the solution of (3.19) gives a set of interpolation coefficients, which gives an approximate 

solution of the unknown function. 

From the last section, we know that basis functions of a finite element mesh form a 

linearly independent set. Consequently the finite dimensional function space Fh can be 

chosen to be the space spanned by the global basis functions of a finite element mesh. Then 

the basis functions in equations (3.17) and (3.18) are chosen to be the global basis functions 

of finite elements. Its dimension is the number of global nodes. The above method is called 

Galerkin's approach, also known as the method of weighted residuals. The reason is easily 

seen from equation (3.13). Rearranging terms, the equation becomes, 

jjj(v2u - f(x,y,z))- wdV = 0 
n 

Here, V2u - f is the residual of the original classical problem and w can be viewed as a 

weight function. Then, the weak problem requires that the average weighted residual to be 

zero. 

The above finite element formulation requires the trial and test function satisfy the 

homogeneous Dirichlet condition (3.12) on S,. In the general case, an inhomogeneous 

Dirichlet condition, such as equation (3.9), needs to be imposed. This cannot be done by 

restricting the functional space F directly. Suppose u, e F and u2 e F. Then u, + u: e F. 

In this case, F is not a linear space at all. The inhomogeneous Dirichlet condition can be 

imposed in two different ways. First, let v=u-g. One choice of g can be 

V s  =  L s j n j  
j=i 
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where M, is the number of nodes on St and n} is the corresponding basis function. 

Obviously, v satisfies the homogeneous Dirichlet condition. Consequently v can be found by 

the above finite element formulation. Then, 

u  =  v + ^ g j n j  

M 

This method is difficult to handle. The second approach simply ignores the Dirichlet 

condition and deletes the first surface integral in equation (3.14). The Dirichlet conditions, 

Uj =gj, j = 1,2,...M,, are imposed on the final linear equation (3.19). It can be shown that 

these two methods are equivalent [76]. The second method is usually implemented in FEM 

codes because of its simplicity. 

The finite element equation (3.18) can also be derived from a variational approach, 

also known as the Ritz method [73-76]. It begins with a functional, which is usually the 

stored energy in electromagnetic fields. Then it selects a function from a trial function 

family as a solution by minimizing the functional with respect to a set of adjustable 

parameters. Therefore, the Ritz method seeks a solution which renders the functional 

stationary. The Ritz method results in the same finite element equation as Galerkin's 

method. 

To facilitate the implementation of finite element method, the finite element equation 

(3.18) is usually formed at the element level first. The discretized solution domain £2h 

consists of a number of finite elements, i.e. 

NEL 

a- = £a; 
k=l 

where NEL is the number of elements in the finite element mesh. Equation (3.18) can also 
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be expressed as 

£ 
k=I 
I j=l 

JJJVNi VNjdV + JjNioNjdS 
V "k 

ul 
NEL 

-z 
k=l 

JJ hNjdS - JJJ fNjdV 
% a\ 

i = 1,2, ...NNPE (3.20) 

where NNPE is the number of nodes in one element and Ns is the local basis function. Here, 

the global basis function n, is disassembled into local basis functions. It is easy to verify 

that equation (3.20) is equivalent to (3.18). The element level linear system is formed by the 

following formulas: 

M-kMb'l (3.21) 

a= =JJJVN, •  V N j d V  fJfN.aN^dS (3.22) 
QÎ sî. 

bf = JJhN jdS - JJJ fNjdV 
a; 

(3.23) 
sî. 

i , j  =  1 , 2 , . . .  N N P E ,  k  =  1 , 2 , . . .  N e l  

The global finite element equation (3.19) is then obtained by assembling each of the element 

equations. The connectivity table, introduced in last section, contains the relation between 

local numbering and global numbering of nodes. It is used here to add the coefficients in 

elemental matrices into the corresponding positions in global matrices. Such a process is 

called assembly. Once the global linear system is obtained, the next step is to solve the linear 

system. 
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3.4 The Linear Solver 

The linear equation solver plays a critical role in the performance of a finite element 

code, since solving the linear system consumes most of the computation time and the 

stiffness matrix consumes most of the storage space. Generally, two different kinds of linear 

solvers are available: the direct solver and the iterative solver. Different storage schemes are 

used for the two kinds of solvers. 

Direct Solver. A direct solver provides a solution after a finite number of arithmetic 

operations. In the absence of rounding error, a direct solver gives an accurate solution. In 

many cases, the stiffness matrix is usually a symmetric and positive definite matrix, the 

Cholesky's method, a symmetric variant of Gaussian elimination, is very popular for solving 

the finite element equations. Given a linear system, 

[A]-[X]= [b] (3.24) 

First, the coefficient matrix is factorized into the product of a lower triangular matrix with 

positive diagonal elements and its transpose. Equation (3.24) becomes 

tL] [Lf [x] = [b] (3.25) 

Next, backsubstitution is performed on the following two triangular systems to obtain [x]. 

M - M - M  ( 3 2 6 )  

[LF[x]=[yl (3.27) 

Backsubstitution is usually very fast and most of the computation time is spent on the 

triangular factorization. 

Since the stiffness matrix from finite element formulation is usually highly sparse, 

exploiting the huge number of zero elements reduces the storage significantly. The band 

method and its closely related variant called the envelope method are two of the most popular 
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techniques [77]. These two methods assume that most of the nonzero elements are 

distributed in the vicinity of the main diagonal as shown in Fig 3.9. Since symmetric 

matrices are considered, only the lower triangular part is shown. Fig 3.9 (a) shows the 

banded storage scheme, which assumes that all the nonzero elements are within a small band 

centered at the main diagonal. The actual storage needed is characterized by the bandwidth 

of the matrix, which is defined as 

bw = max{ |i - j|, a(j * o}, i, j = 1,2,... n 

where n is the dimension of the coefficient matrix. Fig 3.9 (b) shows the envelope storage 

scheme, which allows the bandwidth different for each row. The envelope size, which is 

defined as the number of elements within the envelope, is used to describe the storage 

requirement of this method. The triangular factorization usually suffers from fill-in, which 

refers to that [L] has nonzero elements in positions which are zeros in the lower triangular 

part of [A]. Fortunately, the fill-in's only happen within the bandwidth or envelope. This 

fact allows all the zeros outside the bandwidth or envelope to be discarded. Then, only 

elements within the bandwidth or envelope are stored. The band method works well if the 

bandwidth doesn't vary too much with rows. Generally, the envelope method is more 

effective in exploiting the sparsity. 

The global numbering of nodes has an impact on the bandwidth or envelope size. 

From the point view of storage only, the numbering which results in the minimum bandwidth 

or envelope size is the best choice. The reverse Cuthill-McKee (RCM) ordering algorithm is 

the most widely used bandwidth or envelope size reduction algorithm. See [77] for details. 
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(a) 
\ 

(b) 

Fig 3.9 Banded storage and envelope storage scheme 

Iterative Solver. An iterative solver begins from an initial approximation of the 

solution [x° J and seeks a sequence [xk J, such that lim [xk J= [x]. Split the coefficient matrix 

into two matrices: M and N. 

[A]=[M]-[N] 

Substituting it into equation (3.24), a solution may be reached by the following iterative 

equation: 

[xk>'] = [B].[x]+[c] 

[B] = [M]-'[N], [C] = [M]"1 [b] (3.28) 

Where [B] is termed the iterative matrix. Iterative solvers mainly involve matrix vector 

multiplication. Since zero elements contribute nothing in matrix vector multiplication, all the 

zero elements in the sparse matrix can be discarded. So, in an iterative solver, only nonzero 

elements are stored and usually in an array. Additional arrays are needed for the purpose of 

indexing the nonzero elements. Even so, the storage requirement of an iterative solver is far 

less than that of a direct solver, especially for a large linear system. But iterative solvers are 

likely to suffer from slow convergence. The robustness may be improved by 
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preconditioning. Various iterative algorithms have been developed in recent years. See [78] 

for reference. 

It is hard to determine which kind of solver is better for addressing a particular 

problem since it depends on the specific situation. If a very large linear system is being 

solved, the storage capacity of the computing facility may be the first consideration. An 

iterative solver is the best choice due to its low storage requirements. However in some 

situations, many linear systems with the same coefficient matrix must be solved. A direct 

solver may be better, because the coefficient matrix needs to be factorized only once. 

3.5 General Procedures for Finite Element Method 

Generally, a typical finite element analysis is divided into the following steps: 

generating the finite element mesh, selecting a set of basis functions, evaluating the 

elemental equation, assembling the global linear system, solving the linear system, and 

processing the results. 

Discrelizc the solution domain. Also known as mesh generation, this is the first step 

in a finite element analysis. An appropriate type of finite element is chosen to discretize the 

solution domain. One or more unknown variables, or degrees of freedom, are assigned to the 

nodes in the mesh. The nodes are numbered both locally and globally. A connectivity table 

is built to maintain the correspondence between local numbering and global numbering 

scheme. 

Select basis functions. This is usually done in combination with step I when the 

type of element is chosen. For a particular element type, first order or higher order basis 

functions are chosen according to the continuity requirement of the solution. 
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Evaluate the stiffness matrix and load vector in element level. Once the mesh and 

a set of basis functions are established, we are ready to evaluate the element level stiffness 

matrix and load vector. For example, equations (3.22) and (3.23) are the corresponding 

formulas for the example in the last section. Such formulas usually involve the evaluation of 

integrals. Closed form analytical integration is possible for l-D line element, 2-D triangular 

element and 3-D tetrahedral element [75,76], However, for other element types, such as 2-D 

quadrilateral element and 3-D hexahedral element, numerical integration techniques have to 

be employed. The Gauss-Cotes quadrature is often used in such cases [79]. 

Assemble the element properties to obtain the global linear system. After the 

element equation is formed for each element, they are assembled to form the global linear 

system. The connectivity table built in step I is used to add coefficients in elemental 

stiffness matrix and load vector into the corresponding positions in their global counterparts. 

Solve the global linear system. A linear solver is invoked to solve the global linear 

system to obtain the unknown vector, which is the value of the unknown variable at every 

node. Currently available linear solvers fall into two general classes: direct and iterative. To 

choose a particular solver, a number of factors must be considered, such as, the property of 

the stiffness matrix, the storage and computation time etc. 

Perform additional computations and interpret the numerical results. Additional 

calculations are often needed. For example, it is often desired to calculate electromagnetic 

field variables from potential functions. 
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CHAPTER 4 NUMERICAL SIMULATION OF EDDY CURRENT 
PROBLEMS USING EDGE BASED FINITE ELEMENTS 

4.1 Introduction 

Three formulations are introduced in section 2.8 for eddy current computations. 

Consider the simplest À formulation in frequency domain 

In a finite element analysis, the unknown field is interpolated with a set of basis functions. 

All the basis functions introduced so far are scalar functions while equation (4.1) is a vector 

equation. How does one interpolate a vector field with scalar basis functions? One natural 

choice is to decompose the vector field into its three Cartesian components. Then the 

original vector differential equation is equivalent to the following three scalar equations: 

The three scalar components, Ax, Ay, and Az, can be represented by scalar basis functions 

as discussed before. Since the scalar basis functions and thus the unknowns in the finite 

element equation are assigned to nodes of the finite element mesh, the conventional finite 

element method introduced in last chapter is known as node based finite elements or node 

elements. Such finite elements are suitable for analyzing scalar fields. When used in 

analyzing a vector field, it has to be decomposed into its three Cartesian components. 

However, vectors have physical meanings. They are not just triplets of numbers. By 

dividing a vector into its scalar components, node based finite elements fail to take this into 

account. For example, in electromagnetics, the boundary conditions usually take the form of 

- V ~ A + j (octA = Js (4.1) 

-V 2 A x  + j <UOAX = J „  

- V:Ay + jûxrAy = Jsy 

- V 2 A Z  + j û x r A z  = J a  

(4.2) 

(4.3) 

(4.4) 
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restricting either tangential or normal components. By the very nature of nodal interpolation, 

all the scalar components of a vector are continuous on the inter-element boundaries. This 

violates the boundary conditions if the element boundary happens to be the interface between 

materials with different electromagnetic properties. Better problem formulations, such as Â -

V and À -V-Y formulation, may solve the problem partially, but at the price of introducing 

additional variables, which increases the complexity and makes the computation inefficient. 

This situation forces us to turn to vector finite elements. 

An alternative to the conventional node based finite elements is the edge based finite 

element or edge elements. Edge elements are just special kinds of finite elements whose 

degrees of freedoms are assigned to edges of elements rather than nodes. The basis functions 

are associated with edges of finite elements too, and more importantly, the basis functions are 

vector functions. An arbitrary vector field can be interpolated with the set of vector basis 

functions directly. It is no longer necessary to decompose it into its scalar components any 

more. So unlike node based finite elements, edge elements are vector oriented. Edge 

elements have a few useful properties. For example, they enforce tangential continuity on 

vectors but not normal continuity. They allow a vector field to be separated into the sum of 

the gradient of a scalar function and the remaining part. They can easily deal with field 

singularities and more. In the next few sections, several of them will be discussed. 

Interested readers may refer to [62] for additional details. 

4.2 Edge Based Finite Elements 

To explain the basic principles of edge elements, consider a 2-D quadrilateral element 

shown in Fig 4.1 as an example. An arbitrary 2-D quadrilateral element in x-y plane is 
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defined as the map from a unit square in the transformed domain: u-v plane. The mapping is 

given as follows, 

4 

x  =  Z x i N i ( u ' v )  
j=l 

y - Z y ^ f c v )  ( 4 - 5 )  
H 

where Nj, j = 1,2,3, and 4, are the basis functions associated with the four nodes 

respectively. They are given by the following equations: 

N,(u ,v)  =  ( l -uXl-v)  

N,(u ,v)=u( l -v)  

N 3 (u ,v)=uv (4 .6)  

N 4 (u .  v)  =  ( l  — u)v  

It is easy to verify that these basis functions satisfy the properties of the basis functions 

discussed in section 3.2. Equations (4.5) and (4.6) define the geometry of an arbitrary 

quadrilateral element. These four basis functions can also be used to represent any scalar 

functions. To distinguish them from the vector basis functions introduced later, they are 

termed scalar basis functions or node basis functions. 

A set of four vector basis functions is assigned to the four edges of the element to 

represent a vector field. They are expressed as follows: 

N® = (l - v)Vu 

NÏ = uVv 

Nc
3 = vVu (4.7) 

N* =( l  -u)Vv 

Here, N], j = 1,2,3, and 4, is the vector basis function associated with edge], termed vector 

basis function or edge basis function. The arrow on edge j in Fig 4.1 refers to the direction of 
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V 4 (x4,y4) 

ûr y , )  

C 

(> 
(x2.y2) 

(o-i) (M) 

(0,0) (1,0) U 

Fig 4.1 A 2-D quadrilateral element 

tangential component of N® along edge j. An arbitrary vector field Â within the element is 

then interpolated as 

Â = Z A
J N=(u, v )  

H 
(4.8) 

Fig 4.2 shows plots of the four edge basis functions. The length and direction of an 

arrow represent the magnitude and direction of the edge basis function respectively. Both the 

magnitude and direction are functions of space coordinates. We can see that the set of edge 

basis functions possess an important property: N ® has tangential component only along edge 

j and has no tangential components along any of the other three edges. This property is 

expressed in the following equation 

1 j = i 

of:. 
(4.9) 

This implies that the line integral of N° along edge j is I and the integral is zero along any of 

the other edges. This property is also one of the basic principles that is employed to 

construct an edge element and its vector basis functions. It is this property that makes the 
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Fig 4.2 The edge basis functions for a quadrilateral element 

edge elements enforce only tangential continuity across elements. Furthermore, this property 

implies an important fact concerning edge elements. The interpolation coefficient At in 

equation (4.8) controls the tangential component of the vector field À along edge j. 

jÂ-dî  =  Z JAJNJ dî  = A,  jNf -d ï  =  A 1  (4 .10)  
e, j e, e, 

The above equation implies that the value of the interpolation coefficient A, is the line 

integral of the vector field A along edge i. The purpose of an edge based finite element 

analysis is to find out these interpolation coefficients. Because of the above properties, edge 

elements enforce only tangential continuity across the element boundaries but allow the 
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normal component free to jump. The relaxation in continuity is consistent with the boundary 

conditions in electromagnetics. Welij [80] presented a formulation on eddy current 

computation in terms of magnetic field intensity H directly. By nature of the edge basis 

functions, the continuity of the tangential components of H is imposed while the normal 

component is allow to jump at inter-element boundaries. Hence, edge elements impose the 

boundary conditions in a natural way. 

In this research, 3-D hexahedral elements, shown in Fig 4.3, are employed to simulate 

3-dimensional static and quasistatic electromagnetic field problems. Similar to 2-D 

quadrilateral elements, an arbitrary hexahedral element in x-y-z space is defined as the map 

from a unit cubic element in the transformed domain: u-v-w space. Equation (4.11) gives the 

mathematical expression of the mapping. 

Where N, 's are nodal basis functions associated with the eight nodes. Equation (4.12) and 

(4.13) are the corresponding expressions of the eight nodal basis functions and twelve edge 

basis functions. It's trivial to verify that a 3-D hexahedral element shares the same properties 

as that of a 2-D quadrilateral element. Other types of elements exit, such as 2-D triangular 

elements and 3-D tetrahedral elements. They are also commonly used in edge based finite 

element analysis. Interested readers may refer to [62] and [74] for details. 

x = ZxjNJ(u'v'w) 

(4.11) 
j=l 

S 
Z  =  Z Z J N j (U'V'W) 
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fz | 

(0,1,1) (1.1.1) 

(0,0,1) 

w 

/ (1.0,1) / 
(0.1,0) 

/ 
(1.1.0) 

(0.0,0) (1,0.0) 

u 

Fig 4.3 A 3-D hexahedral element 

N,(u .  v ,  w)  =  ( l -u)( l -v)- ( l -w)  

N,(u ,v ,w)= u( l -v)( l -W)  

N3(U, V, W) = U • V • (L - W) 
N 4 (u. v, w) = (l - u) • v • (l - w) 

N s (u ,v ,w)  =  ( l -u)- ( l -v)-w (4.12)  

N6(U,V,W)= U (L-V)-W 
N 7 ( U , V , W ) =  U - V -  W  
N8(U, v, w) = (l - u) - v - w 

Nf(u ,  v ,  w)  =  ( l  -  v  -  w + v -  w)  Vu 

N*(u.  v ,w)  =  (u-w-u)-Vv 

Nj(u ,  v ,w)  =  (v-vw)-Vu 

N'(u .v .w)  =  ( l -w-u +wu)-Vv 

Nj(u ,  v .  w)  =  ( l  -  u  -  v  +  u -  v) -Vw 

Nj(u .  v .w)  =  (u  -  u-  v)-Vw 

N°(u,v ,w)=u-v-Vw (4.13)  

Ng(u. v, w) = (v - u- v) Vw 

Nq(u,  v .w)  =  (w-w-v)-Vu 

N'0(u, v. w) = w - u - Vv 

Nf, (u, v, w) = v - w - Vu 

N'2 (u. V, W) = (w - W - U) - VV 
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4.3 Magnetic Vector Potential Formulation for Eddy Current Problems 

Magnetic vector potential formulation ( Â formulation) or modified Â formulation 

was introduced in section 2.8. Considering the steady state case under sinusoidal excitation, 

the complete problem description with homogeneous Dirichlet boundary condition and 

inhomogeneous Neumann boundary condition is stated below 

1 - _ 
V x — Vx A + J'ÛXTA = J. in Q (4.14) 

where S, S2 = ÔC1 and S, n S2 = 0. Q is the solution domain and dfi is its boundary, 

which is divided into S, and S,. A homogeneous Dirichlet boundary condition is imposed 

on S, and Neumann boundary condition is imposed on S,. Since the magnetic vector 

potential Â is not a directly measurable quantity, the physical sense of the Dirichlet 

condition is not clear from equation (4.15). Actually, equation (4.15) implies B n = 0 on 

S,. To see this, note the following vector identity (The symbol À and B represent two 

arbitrary vectors. They don't have any physical meaning). 

B - V x Â  =  V - ( À X B ) + Â V X B  ( 4 . 1 7 )  

Apply this vector identity to B n. 

B - n  =  n -  V x Â  =  V - ( Â x n ) +  Â  V x n  

Note V x n = 0. Therefore, the Dirichlet condition (4.15) implies the vanishing normal 

component of magnetic flux density, while the Neumann condition specifies the tangential 

component  of  magnet ic  f ie ld  in tens i ty  on S 2 .  

M 
Â x n = 0 

H x n = h 

on S 

on S 

(4.15) 

(4.16) 
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The weak form of the classical problem described by equations (4.14)-(4.16) is: 

J 1 
n < P 
jjjf V X1V x À - WdV + IIJjûXTÀ - WdV = ||ps. WdV (4.18) 
n x P V Q n 

where Â is a trial solution and W is an arbitrary test function. Both Â and W are 

sufficiently smooth, square integrable and satisfy the homogeneous Dirichlet boundary 

condition (4.15). Invoking the vector identity (4.17) and divergence theorem, the first 

integral in equation (4.18) becomes: 

»< I - ' 
V x —V x A 

a x M 
WdV 

(4.19) 

=  ff f— VxÂ-Vx WdV + cff - î - fox aV W-ndS 
a f4  Em 

Note 

n - —(v x a)x W = —(v x Â)- W x n = W -n x —(v x Â) 
m M M 

The surface integral in equation (4.19) becomes 

<ffl(VxÀ)x W-ndS = ff—VxÂ-WxndS+ f f — VxÂxn-WdS 
js> s> 

Since the test function W satisfies the homogeneous Dirichlet condition (4.15) on S,, the 

first surface integral on the right hand side vanishes. The Neumann condition (4.16) can be 

substituted into the second surface integral. Then the weak form reduces to: 

#XW)I^XÂ^ JÛXTW Â 4V = JJps - WdV + JJ(H x N) WdS (4.20) 
M J n s. 

Suppose the solution domain Q is discretized using hexahedral elements. 

Interpolating the vector field À with edge basis functions described in the last section and 
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letting W = Nf, i = 1,2,...m, where m is the number of edges in an element, results in the 

following matrix equation: 

M-kMs' l  (4.21)  

This is the finite element equation at the element level. The coefficients of the stiffness 

matrix and the load vector are evaluated using the following relationships: 

K-  -  » N' )  x je ,*!?  •  N;  dV (4.22) 

S< = JJps • N*dV + JJ(H x n)- N'dS (4.23) 
n' s; 

i, j = l,2,...m 

The following global linear system is then obtained by assembling all the element level 

systems. 

[K][A] = [S] (4.24) 

The above Â formulation considers the homogeneous Dirichlet condition. The more 

general inhomogeneous Dirichlet condition will be discussed in the next section. The Â 

formulation is employed here for two reasons. First, with edge elements, the À formulation 

is equivalent to Â-V or A-V-ig formulation but the number of unknowns is less [67]; 

Second, we will see later that the calculation of coil impedance in NDE applications is very 

simple with Â formulation implemented using edge elements. 

4.4 The Gauge Condition for Edge Elements 

In last section's Â formulation, the curl of À is specified as the magnetic flux 

density. According to Helmholtz's theorem, a vector field is uniquely determined only if 
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both its curl and divergence are specified. Consequently, the À formulation as denoted by 

equations (4.14)-(4.16) does not provide a unique solution. On the other hand, consider 

equation (4.14). In the non-conducting region, <x = 0. Consequently, the gradient of an 

arbitrary scalar function can be added freely to the vector potential À without affecting the 

equality between the left hand side and right hand side. This fact results in a singular 

stiffness matrix in equation (4.24). Thus, the rank of the stiffness matrix is less than the 

number of unknowns. The global linear system (4.24) is an underdetermined system, which 

usually possesses more than one solution. It's very difficult and computationally expensive 

to solve such a system. The best way to deal with the non-uniqueness problem is to 

introduce an appropriate gauge condition to fix the arbitrariness of À. 

The Coulomb gauge, V - À = 0, introduced in section 2.7, can be employed to fix the 

additional degrees of freedom associated with the magnetic vector potential. This gauge 

condition is consistent with the spirit of node based finite elements. Recall the following 

vector identity, 

By setting V - À = 0, the curl-curl operator becomes the vector Laplacian (Piecewise 

constant magnetic permeability n is assumed) and Â is decomposed into its three Cartesian 

components. In this way, Â is decomposed into three scalars. However, it is difficult to 

impose this gauge condition on edge elements. 

A different type of gauge condition, which prescribes the vector component along the 

direction determined by an arbitrary vector field which does not possess any closed field 
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lines, has been used in association with the edge elements [24,67-69], This component can 

be specified freely without affecting the physical problem. For simplicity, let 

A T  = 0  ( 4 . 2 5 )  

where T is an arbitrary non-vanishing vector field which does not possess any closed field 

lines. With the help of tree and co-tree decomposition from graph theory, this gauge 

condition can be imposed in a natural way. Before we see this, it is necessary to discuss two 

concepts from graph theory first. 

The first concept is the so-called tree and co-tree separation. A finite element mesh 

can be viewed as a connected graph, which is defined as a set of nodes and branches, denoted 

as G(V, E), where V is the set of nodes and E is the set of branches or edges. A spanning 

tree of the graph G is a connecting subgraph TcG, which connects all the nodes but does 

not include any closed loops. A tree of G is denoted as GT(V,T), where T is the set of 

branches forming the tree. Once a tree is specified for a graph, all the remaining branches 

form a co-tree, denoted as Gc(Vc,C), where C is the set of co-tree branches. Fig 4.4-(a) and 

(b) show a graph and a tree of the graph, (c) and (d) show a 3D finite element mesh and a 

tree of the mesh. Obviously, a graph may have more than one tree. So the decomposition of 

branches into tree and co-tree is not unique. Let Nv be the number of nodes in a graph 

G(V, E), Ne be the number of edges, NT be the number of tree branches, and NC be the 

number of co-tree branches. From graph theory, 

N t = N v - 1  

N c = N e - N v + 1  ( 4 . 2 6 )  
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The second concept from graph theory is the independent loop. Suppose a tree is 

identified for a graph. Then adding any co-tree branch to the tree forms a closed loop, in 

which there is only one co-tree edge and all other edges are tree branches. Given a tree, there 

exists one and only one such loop for every co-tree edge. This loop is called the independent 

loop. Fig 4.5 shows two examples of independent loops for the graph shown in Fig 4.4 (a). 

Interested readers may refer to [81] for details on graph theory. An algorithm was proposed 

by Hale to identify all the trees of a general graph [82]. This algorithm can be used to search 

a tree of a finite element mesh. 

Now, consider the gauge condition (4.25). Since a finite element mesh can be viewed 

as a graph, the vector field T in equation (4.25) can be chosen as a vector which is along a 

tree of the finite element mesh. Then the requirement that f does not possess any closed 

field lines is satisfied. Suppose a tree has been specified for a finite element mesh. Let E be 

the set of all edges in the mesh and E has been divided into a set of tree edges T and a set of 

co-tree edges C. Then a vector field Â is divided into the summation of a tree field and a 

co-tree field accordingly. 

Â = £ A ,N„ 

=£ a A + 2>.N„ ( 4 - 2 7 )  

eet «c / 

^ % 

The first term represents the field restricted only on the trees of the finite element mesh, 

called the tree field, denoted as ÂT. The second term is the co-tree field Àc. Webb [62] 

showed that an arbitrary co-tree field has an interesting property: V x Âc * 0 unless Ac is 

identically zero. Âc can be split into two parts: 
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(a) (b) 

(c) (d) 

Fig 4.4 Graphs and trees 
(b) is a tree specified for the graph in (a), (d) is a tree specified for the graph in (c) 

a a 

(a) (b) 

Fig 4.5 Independent loops 
Edge a. b, c. d, e, and fis a tree of the graph shown in Fig 4.4 (a). The dashed edges 
are co-tree edges added to the tree. In (a), the added co-tree edge forms a closed loop 
with c, b, and f. In (b) the added co-tree edge forms a closed loop with f and d. 
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A C =5>; .N,+E A *N,  
ceC 

Substituting the above equation back to equation (4.27) results in 

A = A, + A2 

Â,=E A .=N=+Z A Î=N 

(4.28) 

(4.29) 

Â 2  =X A 2=N e  (4.30) 
ceC 

where the A|e associated with each co-tree branch is determined so that V x A, = 0. 

Suppose k is a co-tree branch and Lk is its independent loop. A'lk is simply determined by 

the following equation, 

Note: in Lk, the only co-tree branch is k and all other branches in this loop are tree branches. 

Equation (4.31 ) simply means that A|k is just the negative sum of the tree filed along the 

independent loop. Since there is one and only one such independent loop for every co-tree 

branch, A'lk is uniquely determined by the AIe's. Therefore Â, is made curl free. It can, 

therefore, be expressed as the gradient of a scalar function. Then equation (4.28) becomes 

Actually, it has been shown that A, is equivalent to Vw, where w e W is an arbitrary scalar 

function [67] and W is the functional space spanned by the node basis functions, i.e. 

Therefore, with the help of tree and co-tree decomposition, A is separated into a co-tree field 

(4.31) 

A = A, + Vw (4.32) 
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which satisfies V x A, *0 and the gradient of a scalar function. 

In À formulation of eddy current problems, the magnetic vector potential À is 

arbitrary to within the gradient of a scalar function. Letting Vw = 0 in equation (4.32) 

eliminates the arbitrariness of À. From the above analysis, setting Vw = 0 can be done by 

setting Â r = 0. Suppose the stiffness matrix is partitioned according to the tree and co-tree 

separation, 

"KCC t 

1 
u 
<
 

1 1 
u 

y
 

[KTC Krr >
 

H
 ST 

(4.33) 

Setting À r = 0, equation (4.33) becomes 

[K c ]  [A C ]=[S C ]  (4 .34)  

This equation has a unique solution, which is Â2. Since Â, contributes nothing to the line 

integral of À along each of the independent loops, i.e. 

c jA-dî= <jA 2 -d ï  =  A : k ,  k  =  l ,2 , . . .N c  (4 .35)  
Lk Lk 

the kth component of Â, is actually the line integral of Â along the kth independent loop. 

Note 

<jA-dî= £  A e  

Lt 
ceLt 

Substituting this equation back into Equation (4.35) gives a relation between the co-tree field 

Âc and the tree field ÂT. It can be expressed in matrix form, 

[AC]=[A,]- [R][A i )  (4 .36)  

where matrix [R] is a NC x NT incidence matrix. Its rows correspond to the NC co-tree 



www.manaraa.com

63 

branches and its columns correspond to the NT tree branches. If a tree branch appears in the 

k-th independent loop and its tangential direction is consistent with the circulation direction, 

a "+l" appears in the corresponding column of k-th row. If the directions are opposite to 

each other, then a "-1" appears. If a tree branch is not included in the independent loop at all, 

a "0" appears in the position. 

In summary, the global linear system (4.33) can be solved using the following 

procedure: 

1. Set ÂT = 0 and solve the linear system (4.34). The solution is À2. 

2. Next, find out the relation between [Ac] and [Ar] using equation (4.36). 

3. Substitute the relation into the system equation (4.33), solve the resulting linear 

system and get the tree field [AT]. 

4. Substitute [At] back to equation (4.36) to get [AC]. 

Once A is solved, the eddy current density can be obtained using the following formula 

In many situations, not all the four steps are necessary. Sometimes, only step 1 is 

needed. First, consider the magnetic flux density B. 

This shows that B can be calculated from Â, only, which is the solution of linear system 

(4.34). Next, consider the coil impedance 

J = - joA (4.37) 

(4.38) 
k 

s s s 
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The above formula exploits the fact V x Â, = 0 ; Is is the current of the coil. We have 

known from equation (4.10) that the unknowns of the global linear system are actually the 

line integral of Â along edges. The above formula, therefore, reduces to 

Z = -j <y — (4.39) 
Is 

where C refers to the set of branches forming the coil. Actually, only co-tree branches in coil 

C contributes to the summation in equation (4.39), because Â, is restricted to co-tree 

branches only. Therefore, if we are just interested in the distribution of magnetic flux density 

or coil impedances, then only equation (4.34) needs to be solved. For efficiency, all the tree 

branches can be discarded at the assembly stage. This greatly reduces the storage 

requirement and computation effort. 

We know that the Dirichlet condition specifies the normal component of magnetic 

flux density on boundary S,. Albanese and Rubinacci [68] showed that the Dirichlet 

conditions could be easily imposed with the help of tree and co-tree separation. Suppose 

B n = b is imposed on S,. View S, as a subgraph of the finite element mesh. Select a tree 

such that all the tree branches on S, forms a tree of the graph S,. Then pick up an arbitrary 

co-tree branch Ak from S,. Its independent loop Lk must be on S,. Perform the following 

operat ion on L k .  

<JÂ dï= JjB-ndS 
u 

Note 
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<fA-dï  =  £ A j  = A£ + X A I  

A T  =0 has  been se t  in  s tep  I  of  the  solut ion process .  This  impl ies  that  a l l  the  degrees  of  

freedom associated with tree branches vanish. So can be obtained from the formula, 

Therefore, the normal component of magnetic flux density on Dirichlet boundary is imposed 

on the degrees of freedom associated with co-tree branches. This explains why this kind of 

boundary condition is termed Dirichlet condition. 

4.5 The Edge Element Model Verification 

This section presents numerical results of three computation examples. The first two 

examples are magnetostatic problems and the third one is an eddy current problem. Letting 

the frequency co = 0, equation (4.14) reduces to 

This is the governing equation for magnetostatic problems. Albanese and Rubinacci [68] 

showed that equation (4.41), together with the gauge condition (4.25), has a unique solution. 

Therefore, the developed À formulation can be used in magnetostatic problems simply by 

setting (û- 0. 

Problem 1. Calculate the magnetic field generated by an infinitely long cylindrical 

conductor carrying a DC current I0. The radius of the conductor is r = a and its magnetic 

permeability is |i. 

(4.40) 

V x —V x A = J (4.41) 
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This is a magnetostatic problem. Fig 4.6 (a) shows the geometry of the problem. The 

analytical solution can be obtained using Gauss's law. The magnetic field intensity is given 

in cylindrical coordinate system 

Lr 

H„ = 
r < a 

ljT2i' 
l" r > a 

. 2m 
Hr = 0, Hz = 0 

The magnetic field does not have any components along the radial and axial directions. The 

field line is along the circumferential direction. Within the conductor, the field value is 

proportional to the radial distance r from the symmetric axis; and outside the conductor the 

field value is inverse proportional to r, as shown in Fig 4.7. 

Since the conductor is infinitely long, the problem can be formulated as a 2D problem 

mathematically. Here it is solved as a 3D problem using the edge element code. The 

solution domain is a cylindrical volume: r < r^, and zmin < z < z^ . Fig 4.6 (b) shows an 

axisymmetric plane of the solution domain. Because of the symmetry, only a quarter of the 

entire domain is considered in numerical computation. Fig 4.8 (a) shows the discretized 

solution domain (the finite element mesh). The parameters are: 

a  =  2mm, r^  = 10mm, z m m  =0mm, z n a x  = 2mm 

Fig 4.8 (b) shows a tree of the mesh. The distribution of the computed magnetic field 

intensity in a plane z = constant is demonstrated in Fig 4.9. It can be seen that the magnetic 

field is in the circumferential direction. The error of the finite element solution is 

characterized by the quantity: 



www.manaraa.com

67 

A> 

(a) (b) 

Fig 4.6 The geometry and solution domain of Problem 1 
(a) shows the geometry and (b) shows an axisymmetric plane of the solution domain 
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Fig 4.7 The Analytical Solution of in Problem 1 
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(a) 

(b) 

Fig 4.8 The finite element mesh of Problem 1 and a tree for it 
(a) shows the finite element mesh of Problem 1 (front view), (b) shows a tree of the 
finite element mesh. 
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The Distribution of Magnetic Field Intensity 

0.009 -
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x 10 

Fig 4.9 The distribution of H in a z = const plane for Problem 1 

max< 
hL"'-H, (o)  

H (0) 
,i = l,2,... NEL 

where NEL is the number of elements in the mesh. The superscript (n) denotes the numerical 

solution while (0) denotes the analytical solution. It describes the maximum relative error of 

the circumferential component compared with the analytical solution. The error values are 

listed in table 4.1 for different mesh sizes. As the number of elements increases, the relative 

error decreases. 

Problem 2. Calculate the self-inductance per unit length of an infinitely long 

solenoid. 

For an infinitely long solenoid, the magnetic flux density inside the solenoid is 

B = /An 
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Table 4.1 Relative error of in Problem 1 

Mesh 
max » 

Number of Elements Number of unknowns 
max 

Ht01 
» 

320 592 2.73% 

1280 2304 1.90% 

5120 9088 1.81% 

where p. is the magnetic permeability of the material inside the solenoid, I is the current and n 

is the number of turns per unit length. The direction of the magnetic field is along the axial 

direction of the solenoid. Outside the solenoid, the magnetic filed is zero everywhere. The 

self-inductance per unit length is 

L„ = /m : S,  

where S is the cross-sectional area of the solenoid. 

The inductance can be calculated using the formula 

L = 2W-
1= 

where Wm is the magnetic energy stored in the magnetic field 

l r - -  1  r B 2  

Wm =- [b •  HdV = — f—dV 
2 J 2 l n  

The magnetic flux density is calculated using the edge element code. 

The other method to calculate the self-inductance involves using the formula 

n<jA-dï  n^Aj  
L = — = — = 

I I I 

where v|/ is the flux linkage and C represents the coil. The dimensions of the solenoid are: 
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inner radius: 0.01 m, outer radius: 0.0101m 

number of turns: 200, permeability //r : 100 

Then L0 = 1.5791 x 10"1 H/m. The numerical results of L and the relative error compared 

with L0 are listed in Table 4.2. As the mesh size decreases, the numerical results approach 

the analytical solution. 

Table 4.2 Numerical values of the self-inductance L and its relative error 

Mesh 
L 

L - L„ 

Number of Elements Number of Unknowns 
L 

L0 

640 844 1.5198x10 ) 3.75% 

1408 1844 1.5627x10 ) 1.04% 

3328 4324 1.5739 x 10 ) 0.33% 

8704 11204 1.5768x10 '  0.15% 

Problem 3. The JSAEM (Japan Society for Applied Electromagnetics and 

Mechanics) benchmark problem 1 [83,84] involves the calculation of the impedance change 

of a pancake coil when placed over a circular conducting plate. Fig 4.10 shows the geometry 

of the problem and the pancake coil. Other coil parameters are listed in Table 4.3. The 

impedance change refers to the difference between the impedance of the coil over the 

conducting plate and the impedance of the same coil in air. 

AZ = Z|  -Z |  
lover the conducting plate lin air 

The problem geometry possesses axisymmetry. It can be formulated as a 2-

dimensional problem mathematically. Here, it is solved as a 3-dimensional problem. Fig 

4.11 is an axisymmetric plane of the solution domain. Table 4.4-4.7 compares the measured 
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j' mm 

1.2 mm 

M l .25 mm 

0.8 mm 

d = 40 mm 
L: lift-off 

Fig 4.10 Problem 3 — JSAEM benchmark problem No. I 
(a) shows the geometry of the problem: a pancake type coil over a circular conducting 
plate, (b) shows the dimension of the pancake coil 

5.75 mm 

J mm 

40 mm 

Fig 4.11 The solution domain of Problem 3 (An axisymmetric plane) 
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value of the real part of the impedance change AR, the imaginary part A<yL and the 

magnitude |AZ| with the corresponding numerical values under different combinations of 

operating frequency and lift-off. In each table, the first row lists the experimental results 

[85]. The second row lists the results from a finite difference code [86]. The third and fourth 

rows list the results from a node based finite element code and an edge based finite element 

code respectively [87]. The fifth, sixth and seventh row are the numerical results from the 

edge element code obtained using three different mesh sizes. As the mesh size decreases, the 

numerical results converge asymptotically. Comparing these results, it can be concluded that 

these numerical results are basically comparable. 

Table 4.3 Coil parameters for Problem 3 

Current Xm A 

Number o f Turns 140 

Frequency 150 kHz 300 kHz 

Inner Diameter 1.2 mm 

Outer Diameter 3.2 mm 

Lift-off 0.5 mm 1.0 mm 

4.6 Conclusions and Discussions 

In summary, the Â -formulation implemented with edge based finite elements has the 

following advantages: 
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Table 4.4 Comparison of numerical and experimental results for Problem 3 
Frequency: 150 kHz Lift-off: 0.5 mm 

AR AttiL AZ 

Experiment 
(JSAEM) 

1.0 -0.79 1.27 

FDM 
(Technical Univ. of Szczecin) 

Uniform Grid 
(Ar = Az = 0.1mm) 1.154 -0.846 1.431 

Node FEM 
(Univ. of Tokyo) 

1.04 -0.83 1.33 

Edge FEM 
(Tohoku Univ.) 

1.05 -0.85 1.35 

Edge FEM 
(Iowa State Univ.) 

nel 2816 
nunk 5329 

0.985 -0.720 1.220 

Edge FEM 
(Iowa State Univ.) 

nel 6656 
nunk 12641 

1.026 -0.753 1.272 

Edge FEM 
(Iowa State Univ.) 

nel 13056 
nunk 24913 

1.045 -0.786 1.308 

Table 4.5 Comparison of numerical and experimental results for Problem 3 
Frequency: 300 kHz Lift-off: 0.5 mm 

AR AûjL AZ 

Experiment 
(JSAEM) 2.22 -2.71 3.50 

FDM 
(Technical Univ. of Szczecin) 

Uniform Grid 
( Ar = Az = 0.1mm ) 2.671 -3.063 4.064 

Node FEM 
(Univ. of Tokyo) 

2.42 -2.83 3.72 

Edge FEM 
(Tohoku Univ.) 

2.42 -2.90 3.78 

Edge FEM 
(Iowa State Univ.) 

nel 2816 
nunk 5329 

2.334 -2.569 3.471 

Edge FEM 
(Iowa State Univ.) 

nel 6656 
nunk 12641 

2.426 -2.684 3.618 

Edge FEM 
(Iowa State Univ.) 

nel 13056 
nunk 24913 

2.456 -2.772 3.704 
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Table 4.6 Comparison of numerical and experimental results for Problem 3 
Frequency: 150 kHz Lift-off: 1.0 mm 

AR AwL AZ 

Experiment 
(JSAEM) 

0.41 -0.48 0.63 

FDM 
(Technical Univ. of Szczecin) 

Uniform Grid 
(Ar = Az = 0.1mm) 0.528 -0.469 0.706 

Node FEM 
(Univ. of Tokyo) 0.48 -0.48 0.68 

Edge FEM 
(Tohoku Univ.) 

0.49 -0.49 0.69 

Edge FEM 
(Iowa State Univ.) 

nel 2816 
nunk 5329 0.426 -0.380 0.571 

Edge FEM 
(Iowa State Univ.) 

nel 6656 
nunk 12641 

0.445 -0.397 0.596 

Edge FEM 
(Iowa State Univ.) 

nel 13056 
nunk 24913 

0.449 -0.404 0.604 

Table 4.7 Comparison of numerical and experimental results for Problem 3 
Frequency: 300 kHz Lift-off: 1.0 mm 

AR A<tiL AZ 

Experiment 
(JSAEM) 

0.94 -1.47 1.74 

FDM 
(Technical Univ. of Szczecin) 

Uniform Grid 
( Ar = Az = 0.1mm ) 1.106 -1.584 1.903 

Node FEM 
(Univ. of Tokyo) 

1.00 -1.48 1.79 

Edge FEM 
(Tohoku Univ.) 

1.00 -1.51 1.81 

Edge FEM 
(Iowa State Univ.) 

nel 2816 
nunk 5329 

0.898 -1.237 1.528 

Edge FEM 
(Iowa State Univ.) 

nel 6656 
nunk 12641 

0.937 -1.293 1.597 

Edge FEM 
(Iowa State Univ.) 

nel 13056 
nunk 24913 

0.944 -1.310 1.615 
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1. The A -formulation implemented with edge elements is equivalent to A-V 

formulation. The node based À -formulation has difficulty in dealing with 

discontinuities in conductivity. Although the A -V formulation can be employed to 

solve the problem (see section 2.8), the introduction of an additional variable 

increases the complexity. Kameari [67] pointed out that the À -formulation 

implemented with edge elements is equivalent to A -V formulation, since the gradient 

of the scalar potential VV is assimilated into Â. With the help of tree and co-tree 

decomposition, the magnetic vector potential À can be separated into the sum of the 

gradient of an arbitrary scalar function and the remaining part. 

2. The edge based À -formulation is computationally more efficient. First, the scalar 

potential V is no longer needed. Next, compared with node based A -formulation, 

the number of unknowns is less. The number of unknowns in edge elements is the 

number of co-tree branches while the number of unknowns for node elements is the 

number of nodes times 3. Generally, the less the number of unknowns, the less the 

storage and CPU time required. 

3. Uniform treatment of both magnetostatic and quasistatic problems is possible. As 

shown in the last section, both the magnetostatic and quasistatic problems can be 

solved using the same formulation. 

The À -formulation has the following disadvantages: 

I. The tree and co-tree separation affects iterative solvers. Different choices of a 

tree of the finite element mesh affects the solution of magnetic vector potential 

and has no effect on the computation of magnetic flux density or the coil 
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impedance. However, this may affect the condition number of the stiffness 

matrix, which results in poor convergence when iterative solvers are used [24]. 

2. The À -formulation implemented in edge elements is inefficient in calculating the 

distribution of induced eddy current density. As discussed in section 4.4, all four 

steps described on page 63 are necessary in this case. 
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CHAPTER 5 AN ADJOINT EQUATION BASED METHOD FOR EDDY 
CURRENT NDE SIGNAL INVERSION 

5.1. Introduction 

Inverse problems in eddy current NDE applications are generally concerned with the 

task of characterizing the size, shape, and location of defects based on information contained 

in eddy current probe signals. Most of the approaches used in industry use a combination of 

signal processing and pattern recognition methods to establish a relationship between the 

geometric parameters defining the defect and specific features of the signals. This chapter 

presents a phenomenological approach that makes use of an edge element based finite 

element model to simulate the underlying physical process and a gradient based minimization 

algorithm to minimize the objective function so that a material distribution that results in a 

signal matching the measured signal in the least square sense is reached. 

The evaluation of the gradient plays a critical role in a gradient based minimization 

algorithm. To evaluate the gradient of the objective function, each of the partial derivatives 

must be evaluated. Common methods call for solving the governing linear system once to 

calculate each of the partial derivatives. This makes the computation time prohibitively long 

in multi-dimensional optimization problems. An adjoint equation based method is presented 

to address the problem. Using the method of Lagrangian multipliers, all the derivatives 

required by the optimization algorithm could be found by solving the governing linear 

system only once. The method reduces the computation time for gradient computation 

significantly. It is used to characterize flaws in heat exchanger tubes from eddy current 

probe signals. Since the gradient method is a local technique, it tends to converge to a poorer 
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local minimum and produce a solution that depends on the starting trial solution. The 

method as well as limitations of the technique is discussed in this chapter. 

5.2 An Iterative Signal Inversion Scheme 

An iterative signal inversion scheme based on gradient search is shown in Fig 5.1. It 

employs a finite element forward model to simulate the underlying physical phenomenon and 

predict the eddy current probe signal. The predicted signal is then compared with an input 

signal obtained from actual measurements. If the mean squared error between the predicted 

and the measured signals is not sufficiently small, the initial defect profile is updated and 

then fed to the forward model. The newly calculated probe response is compared with the 

measured signal again. This process continues until a defect profile that results in a signal 

matching the measured input signal in the least square sense is reached. Such a defect 

characterization procedure can be formulated as an optimization problem. A typical 

optimization problem consists of four ingredients: 

1. a set of state variables <p ; 

2. a set of design parameters X; 

3. an objective function J(<p, X) ; 

4. constraint equations F(<p,X) = 0. 

In a defect characterization problem, the design parameters X are the parameters used to 

describe defect profiles. Fig 5.2 and Fig 5.3 show a method of representing defect profiles 

using isoparametric elements [75]. In Fig 5.2, an arbitrary 2 dimensional defect profile can 

be mapped from an 8-node quadrilateral element. Therefore, the coordinates of the 8 nodes, 
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i.e. 16 parameters, uniquely determine a profile. Similarly, in Fig 5.3, a 3 dimensional defect 

profile is represented with 20 nodes, or equivalently 60 parameters. These parameters can be 

chosen as the defect characterization parameters. The choice of the state variable depends on 

the forward model. The edge element based À formulation introduced in Chapter 4 is 

employed to simulate the eddy current phenomenon in this work. Then the state variable <p 

simply represents the (modified) magnetic vector potential. The constraint condition 

imposed on the parameter set X and state variable <p is then the governing partial differential 

equation (4.14). The discretized version, the finite element equation (4.24) is used here as 

the constraint equation. The equation is written below with the unknown vector replaced by 

the state variable <p, 

The objective function should include the quantity that is minimized when the reconstructed 

defect profile matches the desired one. Therefore the discrepancy between the predicted 

signal and the measured signal should be reflected in the definition of the objective function. 

Since the coil impedance is the most commonly measured test parameter in eddy current 

problems, the objective function is defined as the least square error between the predicted 

and desired impedances, as shown in the following equation: 

where, M is the number of signal samples and the superscript m refers to the measured 

impedance. Given the required four ingredients, the defect characterization problem can then 

be stated as: 

F(<p,X) = [K].[<p]-[s] = 0 (5.1) 

(5.2) 



www.manaraa.com

82 

solve for a set of defect parameters X such that the objective function J(<p, X) is 

minimized, subject to the constraint equation F(<p.X) = 0. 

Many approaches may be used to perform the minimization, or the updating of the forward 

model. If the gradient of the objective function is available, it can be utilized to find a 

minimum. In many cases, the gradient based method is possibly the most rapidly converging 

approach. The procedure can be summarized as follows: 

Starting with an initial defect parameter set X(0), for n = 0,1,2,... 

1. Solve the constraint equation (5.1), and calculate the coil impedance and the 

objective function using equations (4.39) and (5.2) respectively. 

2. Compute the gradient of the objective function VJ and determine a step SX(n| 

based on the gradient. 

3. Update the defect parameters, X(n~" = X(n) + ÔX(n). 

This process relies on the gradient information to set the search direction and step. The 

evaluation of the gradient is termed sensitivity analysis [58]. The performance as well as the 

total computation effort depends heavily on the manner in which the gradient is computed. 

The following section devotes attention to sensitivity analysis since it has a major impact on 

the computation burden. 

5.3 The Adjoint Equation Based Method 

The gradient of the objective function with respect to the defect parameters VJ can 

be calculated from the constraint equation (5.1) and equation (5.2). 

Let X be the set of defect characterization parameters and let its cardinality be m. 
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X = [x , ,x 2 ,  • • ,x m 7 

VJ = dJ dJ dJ 

.dx, ' dx, ' 'dxm 

Using the chain rule, 

dJ _y_dJ_ B<p} "dJ"  
T 

d<p 

dx k  I 9 * J  dx k  dtp _dx k  

k = 1,2, , m (5.3) 

where, 

"dJ"  je
 

s
 

dJ T 
dp, ' d(pz ' 

Since the objective function is a direct function of the coil impedance as given in equation 

(5.2) and the impedance depends directly on the state variables (see equation (4.39)), the first 

term in equation (5.3) is easy to calculate. The second term could be obtained by 

differentiating equation (5.1), which results in the following equation, 

[K] 
dtp "dK" 

•M (5.4) 

To find the derivative of the state variable with respect to each of the defect parameters, 

equation (5.4) has to be solved once for every component of the parameter set X. Since the 

number of the parameters is large and the procedure needs to be carried out repeatedly, the 

computational effort becomes excessive despite the fact that the coefficient matrix in 

equation (5.4) remains the same for all parameters. Besides the above method, the finite 

difference method represents another option for calculating the gradient approximately. 
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However, it suffers from problems due to round off error and the amount of computation is 

huge. 

To perform the sensitivity analysis efficiently, an adjoint equation based method is 

used [56,64], which significantly reduces the computation time for calculating the gradient. 

Using the method of Lagrangian multipliers to enforce the constraint equation (5.1), the 

Lagrangian function is defined as, 

L(cp, X, A) = J(<p, X) - (F(<p, X), A) (5.5) 

where A is the set of Lagrangian multipliers. The stationary conditions of L(<p, X, A) 

results in the following three equations: 

dL 

dA 

dL 

dX 

= 0 => F(<p, X) = 0 

= 0 dF 

dX 
•[A] = dJ_ 

dX 

^ = 0 => [ K f  [A] = 
d<p 

dj 

dtp 

(5.6) 

(5.7) 

(5.8) 

Equation (5.6) is actually the constraint equation (5.1); Equation (5.7) is the optimality 

equation and equation (5.8) is the adjoint equation. Substituting the adjoint equation (5.8) 

and equation (5.4) into equation (5.5) results in the following formula for the evaluation of 

derivatives of the objective function. 

dJ 

dxk 

= W r [K]  dtp 

_dxk 

=-[aF • dK 

dxk 
•M 

k =  l ,2 , -" ,m (5 .9)  

In the above equation, the derivative of the stiffness matrix is calculated from the finite 
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element formulation, and the state variable q> is obtained by solving the constraint equation 

(5.1). The set of Lagrangian multipliers [A] is computed by solving the adjoint equation 

(5.8). The left hand side of the adjoint equation is the transpose of the stiffness matrix, which 

is a symmetric matrix. Consequently only a back substitution is needed to compute [A] since 

the stiffness matrix has been factorized in solving the constraint equation. More importantly, 

once [A] is solved, all the required derivatives can be calculated using the above formula 

regardless of the number of defect parameters. 

5.4 Defect Characterization In Heat Exchanger Tubes 

Eddy current testing is widely used for inspecting heat exchanger tubes. Fig 5.4 

shows the configuration of a typical application. A differential probe is used because of its 

inherent simplicity and modest instrumentation requirements. It consists of two identical 

coils. The output of a differential probe is the difference between the impedances of the two 

coils. In Fig 5.4, the differential probe is stepped forward along the pipe and measurements 

are taken at each step. If no defects exist inside the pipe wall, the impedances of the two 

coils are identical and thus the differential probe output is zero. If a defect is present, the 

impedances of the two coils are perturbed differently, since their positions relative to the 

defect are different. When the probe passes by the defect area, a signal is generated. Fig 5.5 

shows the impedance of the two coils and the probe output. The probe output signal contains 

the information about the defect, such as its location, size and shape. The task of defect 

characterization is to determine the defect information by analyzing the probe output. 
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Fig 5.4 A differential probe scanning a heat exchanger tube with a defect 
inner diameter: 19.7mm, outer diameter: 22.2mm, tube wall material: inconel 
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Fig 5.5 Coil impedances and probe output of a differential probe 
(a) and (b) are the real and imaginary parts of impedances of the two coils, (c) and (d) 
are the real and imaginary parts of the probe output 
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Suppose 20 measurements are taken and the defect is represented by a 20-node 

hexahedral element as shown in Fig 5.3. Then the cardinality of the defect characterization 

parameter set is 60. If the conventional method introduced in the last section is used, the 

number of back substitutions needed is 20 x 61 (1 for solving the constraint equation and 60 

for the sensitivity analysis). If the adjoint equation based method is employed, the 

corresponding number is 20x2 (I for solving the constraint equation and 1 for solving the 

adjoint equation). In the ideal case, the speed up is therefore 30.5. The actual speed up is 

near 29 because of additional overhead. Consequently, the adjoint equation based method 

reduces the amount of computation significantly for sensitivity analysis. 

Since the differential probe is incapable of localizing a defect in the circumferential 

direction, we limit our problem to one of estimating the depth profile of defects. Fig 5.6 

shows an example of such a defect. In this case, the dimension and shape of the defect along 

the circumferential and radial directions are fixed and the depth is a function of the axial 

position. The defect profile is characterized by three depths at three axial positions: d, and 

d, at the ends and d3 at the midpoint. The gradient with respect to the 60 parameters can be 

transformed into the gradient with respect to d,, d2, and d3. The Broyden-Fletcher-

Goldfarb-Shanno (BFGS) algorithm is used to search for the minimum point of the objective 

function [88]. Fig 5.7 shows six test cases. In each case, the initial guess, desired profile, 

and reconstructed profile are shown in (i), and the value of the objective function vs. iteration 

number is shown in (ii). The input signals are generated using the same forward model. The 

algorithm reconstructs the depth profile with very good accuracy. A minimum is found 

within 15 iterations. 
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Fig 5.6 A test defect geometry represented with 3 depths 

5.5 Conclusions and Discussions 

In the last section, a gradient based BFGS algorithm was used successfully to address 

a simple eddy current signal inversion problem. We now. consider a relatively more 

complex defect geometry shown in Fig 5.8. The defect profile is represented with 5 depths: 

d,, d2, d3, d4, and d, in contrast to the previous example which had 3 depths. The same 

minimization algorithm is applied to this case. The algorithm fails to reach an acceptable 

minimum mean square error value. The procedure stops at a high value of the objective 

function. When different initial profiles are used, the algorithm does not converge to a 

unique minimum. Check the points where the procedure stops. The magnitude of the 

gradient of the objective function at these stopping points is very low. Consequently, these 

stopping points can be viewed as either stationary points or saddle points. In this case, the 

minimization algorithm converges to either a local minimum or a saddle point. This is one of 

the disadvantages associated with gradient search method. Hoole et al reported similar 

problems [55]. The existence of multiple local minima is identified in their work too. 
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Fig 5.7 Six defect characterization examples using gradient based method 
In each case, (i) shows the desired profile, initial guess, and reconstructed profile, (ii) 
shows the convergence performance. 
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Fig 5.8 A defect geometry represented with 5 depths 

The problem of multiple local minima can be partially solved by choosing a set of 

different initial profiles. The gradient search algorithm is then used to find out some of the 

local minima. A "global' minimum is picked from these local minima according to the value 

of the objective function. However, such a scheme is not efficient, especially when 

numerous local minima are present. On the other hand, such a procedure would not be able 

to distinguish between stationary points and saddle points. Consequently, a global technique, 

which does not rely on the local property of the objective function, is more suitable for 

minimizing a function with multiple stationary and saddle points. Stochastic methods, 

discussed in the next chapter, are employed to address the problem. 
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CHAPTER 6 STOCHASTIC METHODS FOR EDDY CURRENT NDE 
SIGNAL INVERSION 

6.1 Introduction 

In the last chapter, a defect characterization method based on a gradient search 

minimization algorithm is discussed. The method utilizes the local property (gradient) of the 

objective function to speed the search process. Such methods tend to converge to a local 

minimum. Compared with the gradient search method, stochastic methods do not rely on the 

local properties of the function being minimized. They work well even for nondi fferentiable 

or discontinuous functions. Since they are based on stochastic assumptions, there is a 

nonzero probability that a global minimum will be reached. 

Genetic algorithms and simulated annealing methods are two of the common 

stochastic optimization methods. Although these methods are relatively new, they have been 

used successfully for addressing many optimization applications. The fact that these 

methods are capable of finding a global or quasi-global minimum among multiple local 

minima is particularly attractive. These methods can be viewed as an analogy to natural 

processes that occur in nature. A genetic algorithm mimics Darwin's natural selection 

process. A simulated annealing algorithm models the annealing process of a thermodynamic 

system consisting of multiple particles. The principles of the two methods and their 

performance as a global minimization technique in eddy current NDE signal inversion are 

discussed in the following sections. 
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6.2 Concepts and Terminology of Genetic Algorithms 

A genetic algorithm (GA) mimics the process of natural selection. It begins with a 

group of potential solutions. Each of the individual solutions is evaluated and assigned a 

fitness figure. Through the process of selection and reproduction, highly fitting 

characteristics are passed on to the next group of trial solutions while poorly fitting 

individuals are discarded. The selection and reproduction criterion is based on the fitness 

figure of each individual. The key terminology and concepts of G As are borrowed from the 

theory of Darwin's natural selection. A brief introduction follows. 

Genes and Chromosomes. Genes in a GA represent the coding of optimization 

parameters. A string of genes forms a chromosome. A specific chromosome pattern is 

simply the coded representation of a trial solution. 

Populations and Generations. Individual chromosomes are gathered to form a 

group of trial solutions, which is termed a population. A G A is an iterative algorithm. Each 

iteration is termed a generation. During the selection and reproduction process, a new 

generation is created and used to replace the previous generation. Highly fit characteristics 

are inherited by the new generation with high probability. The process continues after one 

generation by one generation causing a drift of the population toward a global optimum. 

Fitness. The fitness is a merit of figure to evaluate each individual chromosome. 

Usually, the objective function defining the optimization goal acts as the fitness figure. The 

effect of fitness is exerted on each generation through the selection and reproduction process. 

Parents and Children. During the selection and reproduction process, a pair or pairs 

of individual chromosomes are chosen to produce offspring, i.e. more copies of the selected 

chromosomes. The selected pair or pairs are termed parents. Their offspring are termed 
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children. In a generation, each chromosome has a fitness associated with it. The selection is 

performed such that individual chromosomes with better fitness have higher probability of 

being chosen as parents. Children are reproduced by applying genetic operators to the 

selected parents. They are placed back in the original population to replace selected 

individuals with poorer fitness. The modified population replaces the original one as the new 

generation. In this way, highly fit characteristics of individual chromosomes are passed on to 

next generations and the poorly fit chromosomes are discarded. 

Genetic Operators. The genetic operators are stochastic operators applied on 

selected parents to produce offspring. Common operators are crossover and mutation. A 

crossover operation involves the random selection of a crossover point. The gene strings of a 

selected pair break at the crossover point and the pair exchanges the gene substring following 

the crossover point to produce two children. Obviously, the children produced contain a 

recombined set of genes from their parents and thus share the characteristics of their parents. 

Crossover is the most important genetic operator and occurs with high probability, typically 

in the range of 0.6-0.8. A mutation introduces new genetic material into chromosomes. In a 

mutation, genes of selected individuals are randomly picked and replaced with randomly 

generated genes. So, a mutation serves as a mechanism to introduce underrepresented 

chromosome patterns to a population. Mutation occurs with a much lower probability, 

typically in the range of 0.01 to 0.1. 

In summary, a GA involves the following processes: 

1. Coded representation of optimization parameters and trial solutions. Design 

parameters are coded as genes to form chromosomes. 
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2. Creation of an initial population. A group of chromosomes, representing potential 

solutions are generated, usually in a randomized manner. 

3. Evaluation of the individual fitness. The objective function is evaluated and 

assigned to each individual as its fitness. 

4. Evolution. Probabilistic selection is performed to choose parents and poorly fitted 

individuals. Reproduction operations, are performed on parents to produce 

children, which replace the poorly fitted individuals. 

The details on implementing a GA are introduced in the next section. 

6.3 A Genetic Algorithm For Defect Characterization 

To minimize an objective function using a GA, the optimization parameters must be 

first encoded as genes. In a defect characterization problem, these parameters describe the 

defect profiles. Fig 6.1 shows a defect profile representation expressed in terms of 8 depths: 

d,, d2, d3, d4, d5, d6, d7, and d8. A simple way to encode the parameters is to quantize 

the depth as the product of an integer and a quantization unit, i.e. 

dj = Cj - Ad , i = 1,2, 8 

The Cj's are the coded form of d;'s, i.e. genes. Then a specific defect profile is encoded as 

a string of integers, i.e. chromosomes. 

A population consists of individual chromosomes. An initial population could be 

formed by a pseudo-random number generator, which generates the required c, 's for each 

chromosome. A chromosome can be decoded into a defect profile. The forward model 

introduced in chapter 4 is employed to evaluate its associated fitness, which is defined to be 
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Fig 6.1 A 8 depth defect profile representation 

the value of the objective function. 

The evolution process consists of selection and reproduction. A selection mechanism 

must ensure that the relatively more fit individuals have a higher probability to be chosen as 

parents and the poorly fit individuals have a higher probability to be replaced by new 

children. The following selection mechanism is employed. Let N be the dimension of the 

initial population and assume it's a constant throughout the entire evolution. Let f, be the 

f i tness  assoc ia ted  wi th  each  chromosome.  Per form the  fo l lowing opera t ions  on  f , ,  

fmax = max{f,} i = l,2.---N. 

r, = fmax - f, 

=TT-

I r k  
k=l 

p,  =£qk> Po=°-
k=l 

Obviously, the following relation between q, and p, exists. 
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Ai =P, -  Pi-,.  Î = 1,2, -N. 

A relatively fit individual has a lower value of fitness f, and thus a higher value of r-. q, is 

the normalized value of r,, scaled to be within 0 and 1. To see the sense of p; *s, arrange 

them in a one-dimensional coordinate system, as shown in Fig 6.2. Generate a random 

number p, uniformly distributed in the interval (0, l). Then the probability that p is 

between p,., and p^ is q,, i.e. 

Prob(p,., < p < p, ) = qt 

This relation suggests a selection mechanism: 

Generate a random number p, uniformly distributed in the unit interval (0. l), then 

Chromosome i  wi th  f i tness  f (  i s  se lec ted ,  i f  p  sa t i s f ies  p^ . ,  <  p  <  p , .  

The probability that Chromosome i is selected is qj. The above mechanism ensures that the 

less an individual's fitness f,, the more probable it is selected. 

Define the following series, 

A similar mechanism is established to select poorly fit individuals with the property that if 

the fitness of an individual is high, it is selected with a higher probability. 

Once a pair of parents is selected, crossover or mutation may be performed to 

produce a pair of children. Fig 6.3 illustrates a single-point crossover operation on a pair of 

fmm 
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Fig 6.2 Geometrical representation of a GA selection mechanism 
Individual i is selected if a randomly generated number p, uniformly distributed in 
(0 ,  I ) ,  fa l l s  in  the  in terva l  (  p„ , ,  p ,  ) .  The  probabi l i ty  o f  i t s  se lec t ion  i s  q , .  

chromosomes. Its actual effect on the defect profiles is shown in Fig 6.4. The crossover 

operation is actually a recombination of the genes of the selected chromosomes. In Fig 6.3 

and Fig 6.4, only one crossover point is randomly picked. This kind of crossover is termed 

single-point crossover. A child cannot possess both the first several and the last several 

genes of its parents simultaneously in a single-point crossover, which may cause important 

characteristics to be lost. To overcome this deficiency, two-point crossover is introduced to 

replace the simple single-point crossover. In a two-point crossover, two locations are 

randomly picked and the genes between the two locations are exchanged to produce two 

children. Fig 6.5 and Fig 6.6 illustrates the two-point crossover operation and its effect on 

defect profiles. Since highly fit individuals have a higher probability of being selected as 

parents, their characteristics are passed on to their children through crossover. 

A mutation operation on a chromosome is illustrated in Fig 6.7. A location in a 

selected chromosome is randomly picked and the corresponding gene is replaced with a 

randomly generated gene. Its effect on a defect profile is shown in Fig 6.8. Such an 

operation is capable of creating a new chromosome pattern and thus introduces 

underrepresented characteristics into a generation. Both crossover and mutation are 
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probabilistic operations. The probabilities, p^. and pmutc, are assigned before the evolution 

process. A random number generator, which generates random numbers, uniformly 

distributed between 0 and 1, is employed to choose which operation needs to be performed. 

If the random number p is less than pmute, mutation is performed. If p is greater than pmutc 

but less than (pmulc + pcross), crossover is performed. If p is larger than (pmutc + p„oss), the 

chromosome patterns of the selected parents are passed on to the children without any 

changes. The generated children are used to replace two poorly fit individuals of the original 

generation. A new generation is then created. 

A genetic algorithm is illustrated by the flow chart shown in Fig 6.9. It first creates 

an initial population by randomly generating a group of chromosome patterns and calls for 

the forward model to evaluate the fitness of each chromosome. Then the selection 

mechanism described above is employed to select a pair of parents and a pair of poorly fit 

individuals. Next, crossover, mutation, or a direct copy is performed in a probabilistic 

manner. The newly generated children then replace the two selected poorly fit individuals to 

create the next generation. A stopping criterion is invoked to determine when to stop the 

evolutionary process. The average fitness of a generation can be one of the possible stopping 

criteria. Whenever the average fitness is sufficiently small, the evolution stops. This 

algorithm is applied to eddy current NDE signal inversion. Results obtained using this 

approach are presented in the following section. 
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Fig 6.9 The flow chart of a genetic algorithm 



www.manaraa.com

104 

6.4 Defect Characterization In Heat Exchanger Tubes 

Section 5.4 presents an eddy current NDE system that employs a differential pair of 

probes to scan a heat exchanger tube. The probe response is calculated using the edge 

element forward model introduced in Chapter 4. A gradient-based minimization algorithm is 

employed to minimize the objective function. As discussed in section 5.5, the gradient 

search scheme tends to converge to a poorer local minimum and suffers from bad 

convergence. In this section, the genetic algorithm introduced in the last section is employed 

to minimize the objective function. The eddy current NDE problem described in the 

proceeding chapter is used for evaluating the approach. The defect profile is described using 

8 depths, as shown in Fig 6.1. Fig 6.9 shows the flow chart of the algorithm. The dimension 

of the population is fixed during evolution. Each generation, up to 10% of the chromosomes 

are selected to produce next generation. So, the entire population does not need to be 

reevaluated for the fitness. Only the new members (up to 10%) need to be evaluated. Since 

evaluating each chromosome calls for the forward model once, this could partially reduce the 

computation burden. 

Fig 6.10 shows a GA reconstructed defect profile. The desired profile has a 

rectangular shape. In Fig 6.10, (a), (b), and (c), the desired profiles are represented with solid 

lines. The cross signs represent the reconstructed optimization parameters (i.e. genes). The 

horizontal axis represents the axial direction in inch and the vertical axis represents the radial 

direction in inch. The result shown in (a) is obtained with the dimension of the GA 

population N = 20. The results shown in (b) and (c) correspond to N = 50 and N = 100 

respectively. The effect of the dimension of the population is illustrated in Fig 6.10 (d), 

which shows the average fitness of the population vs. the iteration number. The value of the 
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Fig 6.10 GA defect characterization Case 1 
(a), (b), and (c) show the desired defect profiles (solid line) and the reconstructed 
parameters (cross sign) with the dimension of the population being N=20, N=50 and 
N-100 respectively. The horizontal axis represents the axial direction in inch and the 
vertical axis represents the radial direction in inch, (d) shows the normalized average 
fitness vs. iteration number. 
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average fitness, f, is normalized with respect to the average fitness of the initial population, 

fO, and expressed in logarithm scale. When N = 20, the average fitness is reduced 90 times 

after approximately 10 iterations and stabilizes at that level. When N = 50, the average 

fitness is reduced 120 times after approximately 120 iterations. When N = 100, the average 

fitness is reduced nearly 10,000 times after 150 iterations. As the dimension sizes increases, 

the G A converges to a better minimum at the expense of increased computation time. 

One common problem with genetic algorithms is the so called "premature 

convergence", which means the population matures at an early stage of the evolution 

resulting in the average fitness stabilizing at a poorer value. Mutation operations may be able 

to make the GA "jump" out of the local minimum. However, the probability of mutation is 

usually so low that increasing the number of iterations does not help too much. This 

phenomenon is observed in the case N = 20 and N = 50 as shown in Fig 6.10 (a) and (b). 

When a GA matures, all chromosomes in the population often contain the similar patterns. 

Consequently, it is very difficult for the population to drift to a better minimum. This 

phenomenon is caused by the fact that the dimension of the population is usually much 

smaller compared to the dimension of the search space. Therefore, it is impossible for the 

initial population to represent all the possible chromosome patterns. The "premature 

convergence" problem can be improved by increasing the dimension size so that the 

population represents more chromosome patterns, as shown in Fig 6.10 (c). 

More test results on defect characterization are shown in Fig 6.11 - Fig 6.17. These 

results are obtained with the dimension of the population being 100. In most cases, the GA 

reduces the value of the objective function approximately 100 times after 150 iterations. The 

GA works well for a large number of defect profiles. Although we see evidence of 
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"premature convergence" in some cases, the reconstructed profiles are already very close to 

the desired ones. These examples indicate the effectiveness of genetic algorithms and show 

that it can be viewed as a powerful tool for NDE signal inversion. 

6.5 Noise Effect on Defect Characterization 

The defect characterization results presented in the last section is obtained with the 

input signal generated by the finite element forward model. In an actual defect 

characterization application, the input signal is the measured output of the probes. Various 

kinds of noise are inevitable in such signals. This section discusses the effect of signal noise 

on the genetic algorithm in defect characterization. Fig 6.18 shows a typical output signal 

from a differential probe and the signal added with noise. The signal (solid line) is generated 

using the edge element forward model. White noise is added to the signal to illustrate the 

effect of noise. The noise level is 20% with respect to the magnitude of the generated signal. 

To see the effect of noise on GA defect characterization algorithm, the input signals 

to the G A, generated by the forward model, are added with random noise. Two noise levels, 

10% and 20%, are tested. The defect reconstruction results on case I, case 2, case 7 and case 

8 are shown in Fig 6.19 - 6.22 for comparison. The results indicate that the GA is very 

sensitive to noise. Even 10% can disturb the reconstructed defect profile significantly. 

Recall that the defect profile is represented by 8 depths and each depth is quantized to one of 

8 levels, which may be too coarse for a real application. More quantization level is needed to 

improve the space resolution. However, that usually requires much more computation 

resources. 
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Fig 6.11 GA defect characterization Case 2 
(a) shows the desired defect profile (solid line) and the reconstructed parameters (cross 
sign) with the dimension of the population being N=100. (b) shows the normalized 
average fitness vs. iteration number. 
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Fig 6.12 GA defect characterization Case 3 
(a) shows the desired defect profile (solid line) and the reconstructed parameters (cross 
sign) with the dimension of the population being N=100. (b) shows the normalized 
average fitness vs. iteration number. 
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Fig 6.13 GA defect characterization Case 4 
(a) shows the desired defect profile (solid line) and the reconstructed parameters (cross 
sign) with the dimension of the population being N=100. (b) shows the normalized 
average fitness vs. iteration number. 
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Fig 6.14 GA defect characterization Case 5 
(a) shows the desired defect profile (solid line) and the reconstructed parameters (cross 
sign) with the dimension of the population being N=100. (b) shows the normalized 
average fitness vs. iteration number. 
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Fig 6.15 G A defect characterization Case 6 
(a) shows the desired defect profile (solid line) and the reconstructed parameters (cross 
sign) with the dimension of the population being N=100. (b) shows the normalized 
average fitness vs. iteration number. 
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Fig 6.16 GA defect characterization Case 7 
(a) shows the desired defect profile (solid line) and the reconstructed parameters (cross 
sign) with the dimension of the population being N=100. (b) shows the normalized 
average fitness vs. iteration number. 
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Fig 6.17 GA defect characterization Case 8 
(a) shows the desired defect profile (solid line) and the reconstructed parameters (cross 
sign) with the dimension of the population being N=100. (b) shows the normalized 
average fitness vs. iteration number. 
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Fig 6.18 A typical probe signal added with white noise 
(a) shows real part of a differential probe signal (solid line) and the signal added with 
20% white noise (dot sign), (b) shows the imaginary part of the signal (solid line) and the 
signal with 20% white noise (dot sign). 
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Fig 6.19 Noise effect on GA defect characterization Case 1 
(a) shows the reconstructed parameters obtained with noised signal (noise level 10%) 
(b) shows the reconstructed parameters obtained with noised signal (noise level 20%) 
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Fig 6.20 Noise effect on GA defect characterization Case 2 
(a) shows the reconstructed parameters obtained with noised signal (noise level 10%) 
(b) shows the reconstructed parameters obtained with noised signal (noise level 20%) 
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Fig 6.21 Noise effect on GA defect characterization Case 7 
(a) shows the reconstructed parameters obtained with noised signal (noise level 10%) 
(b) shows the reconstructed parameters obtained with noised signal (noise level 20%) 
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Fig 6.22 Noise effect on GA defect characterization Case 8 
(a) shows the reconstructed parameters obtained with noised signal (noise level 10%) 
(b) shows the reconstructed parameters obtained with noised signal (noise level 20%) 
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6.6 The Simulated Annealing Method 

Like genetic algorithms, the simulated annealing method has attracted a significant 

degree of attention as a global optimization technique. The basic principle underlying the 

simulated annealing algorithm is related to the cooling process of a thermodynamic system. 

Consider a thermodynamic system consisting of multiple particles. At high temperature, 

these particles move freely. As the system cools slowly, the particles tend to line themselves 

up to reach a state of minimum energy for the system. The amazing fact is that this 

minimum energy state is reached automatically for a slowly cooling system. 

We draw an analogy between a minimization problem and the thermodynamic 

multiple particle system to gain an understanding of the optimization procedure. The 

parameters being estimated correspond to the configuration of the thermodynamic system 

(the relative positions of the particles). The objective function, the minimization goal, 

corresponds to the energy of the system. To mimic the cooling process of the 

thermodynamic system, a control variable is introduced, which corresponds to the 

temperature. The movement of the particles is modeled as the random change of the 

minimization parameters. Suppose a random movement changes the configuration from a 

state with energy E, to a state with energy E,. The transition from E, to E, is accepted 

with the probability 

E;-E, 

p = e kT 

where k is the Boltzmann's constant and T is the control variable (temperature). If E, is less 

than E,, then p is greater than 1. In this case, p is assigned the value I and state E, is 

always accepted as the next configuration. If E, is greater than E,, state E2 is accepted in a 
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probabilistic manner. Obviously, both the downhill and the uphill movement are allowed for 

a system. But as the control variable decreases, the probability for uphill movement 

decreases too. Therefore, a control variable reduction mechanism must be included in a 

simulated annealing algorithm to reduce the value of the control variable after certain 

changes of the system configuration. This mechanism is termed cooling schedule. 

In summary, a simulated annealing algorithm proceeds as follows: 

1. Begins with an initial system configuration and calculates its energy; Assigns an 

initial value to the control variable T. 

2. Makes a random perturbation of the system configuration and calculates its 

energy. 

3. Decides whether to accept or reject the new configuration according to the 

Boltzmann's probability distribution equation. 

4. If the system configuration changes significantly, reduce the value of the control 

variable according to the cooling schedule. Or, return to step 2. 

5. If the system energy is sufficiently small, then stop. Or, return to step 2. 

The initial value of the control variable and the cooling schedule are very critical for a 

successful implementation of the above algorithm. For a specific problem, they must be 

empirically tuned. The initial value of the control variable usually ensures that all possible 

transitions are accepted, i.e. 

AE 

p = e kT° % 1 

This corresponds to a thermodynamic system at high temperature. All particles move freely. 

A cooling schedule models a physical annealing process, the essence of which is infinitely 
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slow. So, the control variable is reduced gradually, the following cooling schedule is often 

employed, 

Tk*i =«-Tk  

where or is an empirically tuned constant, generally in the range 0.8-0.99. 

Unlike genetic algorithms, a simulated annealing algorithm does not rely on a 

selection mechanism. Instead it rather relies on a rejection mechanism. Therefore, a huge 

number of random perturbations are necessary. The computation burden for evaluating the 

energy associated with each possible configuration is much heavier than that for a genetic 

algorithm. 

Fig 6.23 shows four defect reconstruction examples obtained using the simulated 

annealing method. For comparison, case I, case 2, case 6 and case 8, used in testing the 

genetic algorithm, are addressed again using the simulated annealing method. Acceptable 

solutions are reached after evaluating the objective function approximately 5000 times. 

While for the genetic algorithm discussed in the last two sections, each generation produces 

up to 10 new chromosomes. An 150 iteration evolution process requires evaluating the 

objective function 1500 times. 

6.7 Conclusions and Discussions 

The effectiveness of the genetic algorithm and the simulated annealing method has 

been demonstrated. These methods do not rely on any local properties of the function being 

minimized. Unlike gradient based minimization algorithms, they work well even in the case 

of nondifferentiable or discontinuous functions. It has been shown that these stochastic 

methods reach a global minimum with a nonzero probability. 
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Fig 6.23 Simulated annealing defect characterization examples 
(a) shows the reconstructed parameters (cross sign) obtained from the simulated 
annealing method for Case 1, used in section 6.4. (b), (c) and (d) show the results for 
Case 2, Case 6, and Case 8 respectively. 
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The mechanism for the genetic algorithm and the simulated annealing algorithm is 

quite different. The genetic algorithm begins with a group of trial solutions. A global or a 

quasi-global solution is reached through the process of selection and reproduction, in which 

highly fit characteristics are passed on and poorly fit ones are discarded. It suffers from the 

problem of "premature convergence". Its performance can be improved by increasing the 

dimension of the population or employing advanced evolution techniques. The simulated 

annealing algorithm begins with a single trial solution. A global minimum is reached by 

randomly perturbing the trial solution and selectively rejecting the unwanted solutions. It 

does not suffer from problems such as "premature convergence". However, the method 

requires a large amount of computation effort in evaluating these trial solutions. 

The main problem associated with stochastic methods is the heavy computation 

burden involved in evaluating the objective functions repeatedly. Take the genetic algorithm 

as an example. In each iteration, usually 10% of the total population is updated. Suppose the 

dimension of the population is 100. Then the forward model is called ten times to evaluate 

their fitness. Suppose 150 iterations are needed to reach an acceptable minimum. This 

requires the governing linear system to be solved 1500 times. The number is even larger for 

the simulated annealing algorithm. To reduce the computation time to a reasonable level, a 

special technique based on Woodsbury's technique is employed in this work [89]. Consider 

the finite element mesh of the geometry shown in Fig 6.24 (a). For different defect profiles, 

only a small part of the mesh, i.e. the defect region, is different. This suggests a way to 

reduce the computational effort, which requires numbering the branches such that those 

branches located outside the defect region are numbered first and those inside the defect 

region are numbered last. We then partition the stiffness matrix as shown in Fig 6.24 (b). 
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Fig 6.24 The finite element mesh of a tube with a defect and its partitioned stiffness matrix 
(a) shows an axisymmetric plane of the finite element mesh of a tube with the defect 
elements darkend. (b) shows the stiffness matrix partitioned in accordance with the mesh. 
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Matrix Cqq corresponds to the unknowns associated with the branches outside the defect 

region, and thus remains constant throughout the entire signal inversion process.  Matrix C,,  

corresponds to the unknowns associated with those branches inside the defect region. 

Whenever the defect profile is different, it must be updated accordingly. The fact that the 

linear system needs to be solved thousands of times suggests the use of a direct linear solver, 

such as the LU factorization method. Matrix C# needs to be factorized just once. Each time 

the defect profile is changed, matrix Cu is updated and factorized. Since the dimension of 

Cu is much smaller than that of C#, a significant amount of computation is saved. With the 

rapid development in computation facilities and techniques, parallel computation becomes 

cheaper and open to a lot of research and application areas. The algorithms in this 

dissertation are implemented in a SGI origin 2000 super computer, which has 16Gbits 

memory and 16 processors. With 4 processors, a speedup of 2.5 is reached. 
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CHAPTER 7 CONCLUDING REMARKS AND FUTURE WORK 

The gradient based minimization method works well for 'well-behaved' functions. It 

relies on the gradient of the function to find an optimum search direction and usually goes 

greedily along that direction as far as possible. This makes the gradient based method 

converge very fast. In many applications, the gradient computation is often costly. NDE 

signal inversion is one of such case. Since multiple minimization parameters are involved, 

the forward model usually needs to be solved repeatedly to calculate the required partial 

derivatives. In this dissertation, an adjoint equation based method is presented to reduce the 

amount of gradient computation. Using the method of Lagrangian multipliers, the gradient 

of the objective function is expressed in terms of the Lagrangian multipliers, which can be 

obtained by solving the forward model only once. This reduces the computation effort 

significantly. However, the gradient based minimization method suffers from problems of 

multiple local minima and poor convergence. The greediness of the gradient based method 

often leads to a local minimum and results in a solution that is dependent on the initial trial 

solution. This limits the application of the method to simple cases. 

Unlike the gradient based method, stochastic methods do not rely on any local 

properties of the function being minimized. They work well even for nondifferentiable or 

discontinuous functions. Their stochastic property makes them suitable in many 

minimization applications, where the gradient based method is problematic. This is 

especially true in situations where a global minimum is hidden among multiple poorer local 

minima. This dissertation demonstrates the effectiveness of the genetic algorithm and the 

simulated annealing method for eddy current NDE signal inversion. The main problem with 
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stochastic methods is that they require the evaluation of the objective function a large number 

of times. A fast forward model is a prerequisite for using such methods for NDE signal 

inversion. This dissertation employs a direct linear solver implemented using Woodbury's 

algorithm, which significantly saves the amount of computation. Parallel computational 

techniques are also utilized to reduce the entire computation effort. 

A lot of work has already been done in reconstructing two dimensional defect 

profiles. Three dimensional signal inversion will attract more and more attention in the 

future. The edge based finite element forward model presented in this dissertation is capable 

of simulating a 3D defect. However, the output signal from a differential probe employed in 

this work is not very sensitive to the perturbation of defect profiles in the circumferential 

direction. The advantage of using a differential probe is that it offers the benefit of low 

computational effort since the finite element mesh remains the same as the probe moves 

inside the tube. This implies that the stiffness matrix remains constant. To simulate a 3D 

defect, the forward model must be modified such that it is capable of simulating other types 

of probes, such as pancake probes. Three dimensional defect reconstruction demands 

significant computational resources when stochastic minimization algorithms are employed. 

Consider the defect profile characterized at 8 different points as shown in Fig 6.1. If the 

quantization level of the defect depth is 8, then the search space is very large involving 8s 

candidates. If we consider a 3D defect characterization application, the number of candidates 

increases to S64. In this case, parallel computing is no longer a luxury but a necessity. 
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